common module¶
The source code is adapted from https://github.com/aliaksandr960/segment-anything-eo. Credit to the author Aliaksandr Hancharenka.
array_to_image(array, output, source=None, dtype=None, compress='deflate', **kwargs)
¶
Save a NumPy array as a GeoTIFF using the projection information from an existing GeoTIFF file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
array |
np.ndarray |
The NumPy array to be saved as a GeoTIFF. |
required |
output |
str |
The path to the output image. |
required |
source |
str |
The path to an existing GeoTIFF file with map projection information. Defaults to None. |
None |
dtype |
np.dtype |
The data type of the output array. Defaults to None. |
None |
compress |
str |
The compression method. Can be one of the following: "deflate", "lzw", "packbits", "jpeg". Defaults to "deflate". |
'deflate' |
Source code in samgeo/common.py
def array_to_image(
array, output, source=None, dtype=None, compress="deflate", **kwargs
):
"""Save a NumPy array as a GeoTIFF using the projection information from an existing GeoTIFF file.
Args:
array (np.ndarray): The NumPy array to be saved as a GeoTIFF.
output (str): The path to the output image.
source (str, optional): The path to an existing GeoTIFF file with map projection information. Defaults to None.
dtype (np.dtype, optional): The data type of the output array. Defaults to None.
compress (str, optional): The compression method. Can be one of the following: "deflate", "lzw", "packbits", "jpeg". Defaults to "deflate".
"""
from PIL import Image
if isinstance(array, str) and os.path.exists(array):
array = cv2.imread(array)
array = cv2.cvtColor(array, cv2.COLOR_BGR2RGB)
if output.endswith(".tif") and source is not None:
with rasterio.open(source) as src:
crs = src.crs
transform = src.transform
if compress is None:
compress = src.compression
# Determine the minimum and maximum values in the array
min_value = np.min(array)
max_value = np.max(array)
if dtype is None:
# Determine the best dtype for the array
if min_value >= 0 and max_value <= 1:
dtype = np.float32
elif min_value >= 0 and max_value <= 255:
dtype = np.uint8
elif min_value >= -128 and max_value <= 127:
dtype = np.int8
elif min_value >= 0 and max_value <= 65535:
dtype = np.uint16
elif min_value >= -32768 and max_value <= 32767:
dtype = np.int16
else:
dtype = np.float64
# Convert the array to the best dtype
array = array.astype(dtype)
# Define the GeoTIFF metadata
if array.ndim == 2:
metadata = {
"driver": "GTiff",
"height": array.shape[0],
"width": array.shape[1],
"count": 1,
"dtype": array.dtype,
"crs": crs,
"transform": transform,
}
elif array.ndim == 3:
metadata = {
"driver": "GTiff",
"height": array.shape[0],
"width": array.shape[1],
"count": array.shape[2],
"dtype": array.dtype,
"crs": crs,
"transform": transform,
}
if compress is not None:
metadata["compress"] = compress
else:
raise ValueError("Array must be 2D or 3D.")
# Create a new GeoTIFF file and write the array to it
with rasterio.open(output, "w", **metadata) as dst:
if array.ndim == 2:
dst.write(array, 1)
elif array.ndim == 3:
for i in range(array.shape[2]):
dst.write(array[:, :, i], i + 1)
else:
img = Image.fromarray(array)
img.save(output, **kwargs)
bbox_to_xy(src_fp, coords, coord_crs='epsg:4326', **kwargs)
¶
Converts a list of coordinates to pixel coordinates, i.e., (col, row) coordinates. Note that map bbox coords is [minx, miny, maxx, maxy] from bottomleft to topright While rasterio bbox coords is [minx, max, maxx, min] from topleft to bottomright
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_fp |
str |
The source raster file path. |
required |
coords |
list |
A list of coordinates in the format of [[minx, miny, maxx, maxy], [minx, miny, maxx, maxy], ...] |
required |
coord_crs |
str |
The coordinate CRS of the input coordinates. Defaults to "epsg:4326". |
'epsg:4326' |
Returns:
Type | Description |
---|---|
list |
A list of pixel coordinates in the format of [[minx, maxy, maxx, miny], ...] from top left to bottom right. |
Source code in samgeo/common.py
def bbox_to_xy(
src_fp: str, coords: list, coord_crs: str = "epsg:4326", **kwargs
) -> list:
"""Converts a list of coordinates to pixel coordinates, i.e., (col, row) coordinates.
Note that map bbox coords is [minx, miny, maxx, maxy] from bottomleft to topright
While rasterio bbox coords is [minx, max, maxx, min] from topleft to bottomright
Args:
src_fp (str): The source raster file path.
coords (list): A list of coordinates in the format of [[minx, miny, maxx, maxy], [minx, miny, maxx, maxy], ...]
coord_crs (str, optional): The coordinate CRS of the input coordinates. Defaults to "epsg:4326".
Returns:
list: A list of pixel coordinates in the format of [[minx, maxy, maxx, miny], ...] from top left to bottom right.
"""
if isinstance(coords, str):
gdf = gpd.read_file(coords)
coords = gdf.geometry.bounds.values.tolist()
if gdf.crs is not None:
coord_crs = f"epsg:{gdf.crs.to_epsg()}"
elif isinstance(coords, np.ndarray):
coords = coords.tolist()
if isinstance(coords, dict):
import json
geojson = json.dumps(coords)
gdf = gpd.read_file(geojson, driver="GeoJSON")
coords = gdf.geometry.bounds.values.tolist()
elif not isinstance(coords, list):
raise ValueError("coords must be a list of coordinates.")
if not isinstance(coords[0], list):
coords = [coords]
new_coords = []
with rasterio.open(src_fp) as src:
width = src.width
height = src.height
for coord in coords:
minx, miny, maxx, maxy = coord
if coord_crs != src.crs:
minx, miny = transform_coords(minx, miny, coord_crs, src.crs, **kwargs)
maxx, maxy = transform_coords(maxx, maxy, coord_crs, src.crs, **kwargs)
rows1, cols1 = rasterio.transform.rowcol(
src.transform, minx, miny, **kwargs
)
rows2, cols2 = rasterio.transform.rowcol(
src.transform, maxx, maxy, **kwargs
)
new_coords.append([cols1, rows1, cols2, rows2])
else:
new_coords.append([minx, miny, maxx, maxy])
result = []
for coord in new_coords:
minx, miny, maxx, maxy = coord
if (
minx >= 0
and miny >= 0
and maxx >= 0
and maxy >= 0
and minx < width
and miny < height
and maxx < width
and maxy < height
):
# Note that map bbox coords is [minx, miny, maxx, maxy] from bottomleft to topright
# While rasterio bbox coords is [minx, max, maxx, min] from topleft to bottomright
result.append([minx, maxy, maxx, miny])
if len(result) == 0:
print("No valid pixel coordinates found.")
return None
elif len(result) == 1:
return result[0]
elif len(result) < len(coords):
print("Some coordinates are out of the image boundary.")
return result
blend_images(img1, img2, alpha=0.5, output=False, show=True, figsize=(12, 10), axis='off', **kwargs)
¶
Blends two images together using the addWeighted function from the OpenCV library.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
img1 |
numpy.ndarray |
The first input image on top represented as a NumPy array. |
required |
img2 |
numpy.ndarray |
The second input image at the bottom represented as a NumPy array. |
required |
alpha |
float |
The weighting factor for the first image in the blend. By default, this is set to 0.5. |
0.5 |
output |
str |
The path to the output image. Defaults to False. |
False |
show |
bool |
Whether to display the blended image. Defaults to True. |
True |
figsize |
tuple |
The size of the figure. Defaults to (12, 10). |
(12, 10) |
axis |
str |
The axis of the figure. Defaults to "off". |
'off' |
**kwargs |
Additional keyword arguments to pass to the cv2.addWeighted() function. |
{} |
Returns:
Type | Description |
---|---|
numpy.ndarray |
The blended image as a NumPy array. |
Source code in samgeo/common.py
def blend_images(
img1,
img2,
alpha=0.5,
output=False,
show=True,
figsize=(12, 10),
axis="off",
**kwargs,
):
"""
Blends two images together using the addWeighted function from the OpenCV library.
Args:
img1 (numpy.ndarray): The first input image on top represented as a NumPy array.
img2 (numpy.ndarray): The second input image at the bottom represented as a NumPy array.
alpha (float): The weighting factor for the first image in the blend. By default, this is set to 0.5.
output (str, optional): The path to the output image. Defaults to False.
show (bool, optional): Whether to display the blended image. Defaults to True.
figsize (tuple, optional): The size of the figure. Defaults to (12, 10).
axis (str, optional): The axis of the figure. Defaults to "off".
**kwargs: Additional keyword arguments to pass to the cv2.addWeighted() function.
Returns:
numpy.ndarray: The blended image as a NumPy array.
"""
# Resize the images to have the same dimensions
if isinstance(img1, str):
if img1.startswith("http"):
img1 = download_file(img1)
if not os.path.exists(img1):
raise ValueError(f"Input path {img1} does not exist.")
img1 = cv2.imread(img1)
if isinstance(img2, str):
if img2.startswith("http"):
img2 = download_file(img2)
if not os.path.exists(img2):
raise ValueError(f"Input path {img2} does not exist.")
img2 = cv2.imread(img2)
if img1.dtype == np.float32:
img1 = (img1 * 255).astype(np.uint8)
if img2.dtype == np.float32:
img2 = (img2 * 255).astype(np.uint8)
if img1.dtype != img2.dtype:
img2 = img2.astype(img1.dtype)
img1 = cv2.resize(img1, (img2.shape[1], img2.shape[0]))
# Blend the images using the addWeighted function
beta = 1 - alpha
blend_img = cv2.addWeighted(img1, alpha, img2, beta, 0, **kwargs)
if output:
array_to_image(blend_img, output, img2)
if show:
plt.figure(figsize=figsize)
plt.imshow(blend_img)
plt.axis(axis)
plt.show()
else:
return blend_img
boxes_to_vector(coords, src_crs, dst_crs='EPSG:4326', output=None, **kwargs)
¶
Convert a list of bounding box coordinates to vector data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords |
list |
A list of bounding box coordinates in the format [[left, top, right, bottom], [left, top, right, bottom], ...]. |
required |
src_crs |
int or str |
The EPSG code or proj4 string representing the source coordinate reference system (CRS) of the input coordinates. |
required |
dst_crs |
int or str |
The EPSG code or proj4 string representing the destination CRS to reproject the data (default is "EPSG:4326"). |
'EPSG:4326' |
output |
str or None |
The full file path (including the directory and filename without the extension) where the vector data should be saved. If None (default), the function returns the GeoDataFrame without saving it to a file. |
None |
**kwargs |
Additional keyword arguments to pass to geopandas.GeoDataFrame.to_file() when saving the vector data. |
{} |
Returns:
Type | Description |
---|---|
geopandas.GeoDataFrame or None |
The GeoDataFrame with the converted vector data if output is None, otherwise None if the data is saved to a file. |
Source code in samgeo/common.py
def boxes_to_vector(coords, src_crs, dst_crs="EPSG:4326", output=None, **kwargs):
"""
Convert a list of bounding box coordinates to vector data.
Args:
coords (list): A list of bounding box coordinates in the format [[left, top, right, bottom], [left, top, right, bottom], ...].
src_crs (int or str): The EPSG code or proj4 string representing the source coordinate reference system (CRS) of the input coordinates.
dst_crs (int or str, optional): The EPSG code or proj4 string representing the destination CRS to reproject the data (default is "EPSG:4326").
output (str or None, optional): The full file path (including the directory and filename without the extension) where the vector data should be saved.
If None (default), the function returns the GeoDataFrame without saving it to a file.
**kwargs: Additional keyword arguments to pass to geopandas.GeoDataFrame.to_file() when saving the vector data.
Returns:
geopandas.GeoDataFrame or None: The GeoDataFrame with the converted vector data if output is None, otherwise None if the data is saved to a file.
"""
from shapely.geometry import box
# Create a list of Shapely Polygon objects based on the provided coordinates
polygons = [box(*coord) for coord in coords]
# Create a GeoDataFrame with the Shapely Polygon objects
gdf = gpd.GeoDataFrame({"geometry": polygons}, crs=src_crs)
# Reproject the GeoDataFrame to the specified EPSG code
gdf_reprojected = gdf.to_crs(dst_crs)
if output is not None:
gdf_reprojected.to_file(output, **kwargs)
else:
return gdf_reprojected
check_file_path(file_path, make_dirs=True)
¶
Gets the absolute file path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
file_path |
str |
The path to the file. |
required |
make_dirs |
bool |
Whether to create the directory if it does not exist. Defaults to True. |
True |
Exceptions:
Type | Description |
---|---|
FileNotFoundError |
If the directory could not be found. |
TypeError |
If the input directory path is not a string. |
Returns:
Type | Description |
---|---|
str |
The absolute path to the file. |
Source code in samgeo/common.py
def check_file_path(file_path, make_dirs=True):
"""Gets the absolute file path.
Args:
file_path (str): The path to the file.
make_dirs (bool, optional): Whether to create the directory if it does not exist. Defaults to True.
Raises:
FileNotFoundError: If the directory could not be found.
TypeError: If the input directory path is not a string.
Returns:
str: The absolute path to the file.
"""
if isinstance(file_path, str):
if file_path.startswith("~"):
file_path = os.path.expanduser(file_path)
else:
file_path = os.path.abspath(file_path)
file_dir = os.path.dirname(file_path)
if not os.path.exists(file_dir) and make_dirs:
os.makedirs(file_dir)
return file_path
else:
raise TypeError("The provided file path must be a string.")
choose_device(empty_cache=True, quiet=True)
¶
Choose a device (CPU or GPU) for deep learning.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
empty_cache |
bool |
Whether to empty the CUDA cache if a GPU is used. Defaults to True. |
True |
quiet |
bool |
Whether to suppress device information printout. Defaults to True. |
True |
Returns:
Type | Description |
---|---|
str |
The device name. |
Source code in samgeo/common.py
def choose_device(empty_cache: bool = True, quiet: bool = True) -> str:
"""Choose a device (CPU or GPU) for deep learning.
Args:
empty_cache (bool): Whether to empty the CUDA cache if a GPU is used. Defaults to True.
quiet (bool): Whether to suppress device information printout. Defaults to True.
Returns:
str: The device name.
"""
import torch
# if using Apple MPS, fall back to CPU for unsupported ops
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
# select the device for computation
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
if not quiet:
print(f"Using device: {device}")
if device.type == "cuda":
if empty_cache:
torch.cuda.empty_cache()
# use bfloat16 for the entire notebook
torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
elif device.type == "mps":
if not quiet:
print(
"\nSupport for MPS devices is preliminary. SAM 2 is trained with CUDA and might "
"give numerically different outputs and sometimes degraded performance on MPS. "
"See e.g. https://github.com/pytorch/pytorch/issues/84936 for a discussion."
)
return device
coords_to_geojson(coords, output=None)
¶
Convert a list of coordinates (lon, lat) to a GeoJSON string or file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
coords |
list |
A list of coordinates (lon, lat). |
required |
output |
str |
The output file path. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
dict |
A GeoJSON dictionary. |
Source code in samgeo/common.py
def coords_to_geojson(coords, output=None):
"""Convert a list of coordinates (lon, lat) to a GeoJSON string or file.
Args:
coords (list): A list of coordinates (lon, lat).
output (str, optional): The output file path. Defaults to None.
Returns:
dict: A GeoJSON dictionary.
"""
import json
if len(coords) == 0:
return
# Create a GeoJSON FeatureCollection object
feature_collection = {"type": "FeatureCollection", "features": []}
# Iterate through the coordinates list and create a GeoJSON Feature object for each coordinate
for coord in coords:
feature = {
"type": "Feature",
"geometry": {"type": "Point", "coordinates": coord},
"properties": {},
}
feature_collection["features"].append(feature)
# Convert the FeatureCollection object to a JSON string
geojson_str = json.dumps(feature_collection)
if output is not None:
with open(output, "w") as f:
f.write(geojson_str)
else:
return geojson_str
coords_to_xy(src_fp, coords, coord_crs='epsg:4326', return_out_of_bounds=False, **kwargs)
¶
Converts a list or array of coordinates to pixel coordinates, i.e., (col, row) coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_fp |
str |
The source raster file path. |
required |
coords |
ndarray |
A 2D or 3D array of coordinates. Can be of shape [[x1, y1], [x2, y2], ...] or [[[x1, y1]], [[x2, y2]], ...]. |
required |
coord_crs |
str |
The coordinate CRS of the input coordinates. Defaults to "epsg:4326". |
'epsg:4326' |
return_out_of_bounds |
Whether to return out-of-bounds coordinates. Defaults to False. |
False |
|
**kwargs |
Additional keyword arguments to pass to rasterio.transform.rowcol. |
{} |
Returns:
Type | Description |
---|---|
ndarray |
A 2D or 3D array of pixel coordinates in the same format as the input. |
Source code in samgeo/common.py
def coords_to_xy(
src_fp: str,
coords: np.ndarray,
coord_crs: str = "epsg:4326",
return_out_of_bounds=False,
**kwargs,
) -> np.ndarray:
"""Converts a list or array of coordinates to pixel coordinates, i.e., (col, row) coordinates.
Args:
src_fp: The source raster file path.
coords: A 2D or 3D array of coordinates. Can be of shape [[x1, y1], [x2, y2], ...]
or [[[x1, y1]], [[x2, y2]], ...].
coord_crs: The coordinate CRS of the input coordinates. Defaults to "epsg:4326".
return_out_of_bounds: Whether to return out-of-bounds coordinates. Defaults to False.
**kwargs: Additional keyword arguments to pass to rasterio.transform.rowcol.
Returns:
A 2D or 3D array of pixel coordinates in the same format as the input.
"""
from rasterio.warp import transform as transform_coords
out_of_bounds = []
if isinstance(coords, np.ndarray):
input_is_3d = coords.ndim == 3 # Check if the input is a 3D array
else:
input_is_3d = False
# Flatten the 3D array to 2D if necessary
if input_is_3d:
original_shape = coords.shape # Store the original shape
coords = coords.reshape(-1, 2) # Flatten to 2D
# Convert ndarray to a list if necessary
if isinstance(coords, np.ndarray):
coords = coords.tolist()
xs, ys = zip(*coords)
with rasterio.open(src_fp) as src:
width = src.width
height = src.height
if coord_crs != src.crs:
xs, ys = transform_coords(coord_crs, src.crs, xs, ys, **kwargs)
rows, cols = rasterio.transform.rowcol(src.transform, xs, ys, **kwargs)
result = [[col, row] for col, row in zip(cols, rows)]
output = []
for i, (x, y) in enumerate(result):
if x >= 0 and y >= 0 and x < width and y < height:
output.append([x, y])
else:
out_of_bounds.append(i)
# Convert the output back to the original shape if input was 3D
output = np.array(output)
if input_is_3d:
output = output.reshape(original_shape)
# Handle cases where no valid pixel coordinates are found
if len(output) == 0:
print("No valid pixel coordinates found.")
elif len(output) < len(coords):
print("Some coordinates are out of the image boundary.")
if return_out_of_bounds:
return output, out_of_bounds
else:
return output
download_checkpoint(model_type='vit_h', checkpoint_dir=None, hq=False)
¶
Download the SAM model checkpoint.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_type |
str |
The model type. Can be one of ['vit_h', 'vit_l', 'vit_b']. Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details. |
'vit_h' |
checkpoint_dir |
str |
The checkpoint_dir directory. Defaults to None, "~/.cache/torch/hub/checkpoints". |
None |
hq |
bool |
Whether to use HQ-SAM model (https://github.com/SysCV/sam-hq). Defaults to False. |
False |
Source code in samgeo/common.py
def download_checkpoint(model_type="vit_h", checkpoint_dir=None, hq=False):
"""Download the SAM model checkpoint.
Args:
model_type (str, optional): The model type. Can be one of ['vit_h', 'vit_l', 'vit_b'].
Defaults to 'vit_h'. See https://bit.ly/3VrpxUh for more details.
checkpoint_dir (str, optional): The checkpoint_dir directory. Defaults to None, "~/.cache/torch/hub/checkpoints".
hq (bool, optional): Whether to use HQ-SAM model (https://github.com/SysCV/sam-hq). Defaults to False.
"""
if not hq:
model_types = {
"vit_h": {
"name": "sam_vit_h_4b8939.pth",
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
},
"vit_l": {
"name": "sam_vit_l_0b3195.pth",
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
},
"vit_b": {
"name": "sam_vit_b_01ec64.pth",
"url": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
},
}
else:
model_types = {
"vit_h": {
"name": "sam_hq_vit_h.pth",
"url": [
"https://github.com/opengeos/datasets/releases/download/models/sam_hq_vit_h.zip",
"https://github.com/opengeos/datasets/releases/download/models/sam_hq_vit_h.z01",
],
},
"vit_l": {
"name": "sam_hq_vit_l.pth",
"url": "https://github.com/opengeos/datasets/releases/download/models/sam_hq_vit_l.pth",
},
"vit_b": {
"name": "sam_hq_vit_b.pth",
"url": "https://github.com/opengeos/datasets/releases/download/models/sam_hq_vit_b.pth",
},
"vit_tiny": {
"name": "sam_hq_vit_tiny.pth",
"url": "https://github.com/opengeos/datasets/releases/download/models/sam_hq_vit_tiny.pth",
},
}
if model_type not in model_types:
raise ValueError(
f"Invalid model_type: {model_type}. It must be one of {', '.join(model_types)}"
)
if checkpoint_dir is None:
checkpoint_dir = os.environ.get(
"TORCH_HOME", os.path.expanduser("~/.cache/torch/hub/checkpoints")
)
checkpoint = os.path.join(checkpoint_dir, model_types[model_type]["name"])
if not os.path.exists(checkpoint):
print(f"Model checkpoint for {model_type} not found.")
url = model_types[model_type]["url"]
if isinstance(url, str):
download_file(url, checkpoint)
elif isinstance(url, list):
download_files(url, checkpoint_dir, multi_part=True)
return checkpoint
download_checkpoint_legacy(url=None, output=None, overwrite=False, **kwargs)
¶
Download a checkpoint from URL. It can be one of the following: sam_vit_h_4b8939.pth, sam_vit_l_0b3195.pth, sam_vit_b_01ec64.pth.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
The checkpoint URL. Defaults to None. |
None |
output |
str |
The output file path. Defaults to None. |
None |
overwrite |
bool |
Overwrite the file if it already exists. Defaults to False. |
False |
Returns:
Type | Description |
---|---|
str |
The output file path. |
Source code in samgeo/common.py
def download_checkpoint_legacy(url=None, output=None, overwrite=False, **kwargs):
"""Download a checkpoint from URL. It can be one of the following: sam_vit_h_4b8939.pth, sam_vit_l_0b3195.pth, sam_vit_b_01ec64.pth.
Args:
url (str, optional): The checkpoint URL. Defaults to None.
output (str, optional): The output file path. Defaults to None.
overwrite (bool, optional): Overwrite the file if it already exists. Defaults to False.
Returns:
str: The output file path.
"""
checkpoints = {
"sam_vit_h_4b8939.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth",
"sam_vit_l_0b3195.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth",
"sam_vit_b_01ec64.pth": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth",
}
if isinstance(url, str) and url in checkpoints:
url = checkpoints[url]
if url is None:
url = checkpoints["sam_vit_h_4b8939.pth"]
if output is None:
output = os.path.basename(url)
return download_file(url, output, overwrite=overwrite, **kwargs)
download_file(url=None, output=None, quiet=False, proxy=None, speed=None, use_cookies=True, verify=True, id=None, fuzzy=False, resume=False, unzip=True, overwrite=False, subfolder=False)
¶
Download a file from URL, including Google Drive shared URL.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
Google Drive URL is also supported. Defaults to None. |
None |
output |
str |
Output filename. Default is basename of URL. |
None |
quiet |
bool |
Suppress terminal output. Default is False. |
False |
proxy |
str |
Proxy. Defaults to None. |
None |
speed |
float |
Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None. |
None |
use_cookies |
bool |
Flag to use cookies. Defaults to True. |
True |
verify |
bool | str |
Either a bool, in which case it controls whether the server's TLS certificate is verified, or a string, in which case it must be a path to a CA bundle to use. Default is True.. Defaults to True. |
True |
id |
str |
Google Drive's file ID. Defaults to None. |
None |
fuzzy |
bool |
Fuzzy extraction of Google Drive's file Id. Defaults to False. |
False |
resume |
bool |
Resume the download from existing tmp file if possible. Defaults to False. |
False |
unzip |
bool |
Unzip the file. Defaults to True. |
True |
overwrite |
bool |
Overwrite the file if it already exists. Defaults to False. |
False |
subfolder |
bool |
Create a subfolder with the same name as the file. Defaults to False. |
False |
Returns:
Type | Description |
---|---|
str |
The output file path. |
Source code in samgeo/common.py
def download_file(
url=None,
output=None,
quiet=False,
proxy=None,
speed=None,
use_cookies=True,
verify=True,
id=None,
fuzzy=False,
resume=False,
unzip=True,
overwrite=False,
subfolder=False,
):
"""Download a file from URL, including Google Drive shared URL.
Args:
url (str, optional): Google Drive URL is also supported. Defaults to None.
output (str, optional): Output filename. Default is basename of URL.
quiet (bool, optional): Suppress terminal output. Default is False.
proxy (str, optional): Proxy. Defaults to None.
speed (float, optional): Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None.
use_cookies (bool, optional): Flag to use cookies. Defaults to True.
verify (bool | str, optional): Either a bool, in which case it controls whether the server's TLS certificate is verified, or a string,
in which case it must be a path to a CA bundle to use. Default is True.. Defaults to True.
id (str, optional): Google Drive's file ID. Defaults to None.
fuzzy (bool, optional): Fuzzy extraction of Google Drive's file Id. Defaults to False.
resume (bool, optional): Resume the download from existing tmp file if possible. Defaults to False.
unzip (bool, optional): Unzip the file. Defaults to True.
overwrite (bool, optional): Overwrite the file if it already exists. Defaults to False.
subfolder (bool, optional): Create a subfolder with the same name as the file. Defaults to False.
Returns:
str: The output file path.
"""
import zipfile
try:
import gdown
except ImportError:
print(
"The gdown package is required for this function. Use `pip install gdown` to install it."
)
return
if output is None:
if isinstance(url, str) and url.startswith("http"):
output = os.path.basename(url)
out_dir = os.path.abspath(os.path.dirname(output))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if isinstance(url, str):
if os.path.exists(os.path.abspath(output)) and (not overwrite):
print(
f"{output} already exists. Skip downloading. Set overwrite=True to overwrite."
)
return os.path.abspath(output)
else:
url = github_raw_url(url)
if "https://drive.google.com/file/d/" in url:
fuzzy = True
output = gdown.download(
url, output, quiet, proxy, speed, use_cookies, verify, id, fuzzy, resume
)
if unzip and output.endswith(".zip"):
with zipfile.ZipFile(output, "r") as zip_ref:
if not quiet:
print("Extracting files...")
if subfolder:
basename = os.path.splitext(os.path.basename(output))[0]
output = os.path.join(out_dir, basename)
if not os.path.exists(output):
os.makedirs(output)
zip_ref.extractall(output)
else:
zip_ref.extractall(os.path.dirname(output))
return os.path.abspath(output)
download_files(urls, out_dir=None, filenames=None, quiet=False, proxy=None, speed=None, use_cookies=True, verify=True, id=None, fuzzy=False, resume=False, unzip=True, overwrite=False, subfolder=False, multi_part=False)
¶
Download files from URLs, including Google Drive shared URL.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
urls |
list |
The list of urls to download. Google Drive URL is also supported. |
required |
out_dir |
str |
The output directory. Defaults to None. |
None |
filenames |
list |
Output filename. Default is basename of URL. |
None |
quiet |
bool |
Suppress terminal output. Default is False. |
False |
proxy |
str |
Proxy. Defaults to None. |
None |
speed |
float |
Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None. |
None |
use_cookies |
bool |
Flag to use cookies. Defaults to True. |
True |
verify |
bool | str |
Either a bool, in which case it controls whether the server's TLS certificate is verified, or a string, in which case it must be a path to a CA bundle to use. Default is True.. Defaults to True. |
True |
id |
str |
Google Drive's file ID. Defaults to None. |
None |
fuzzy |
bool |
Fuzzy extraction of Google Drive's file Id. Defaults to False. |
False |
resume |
bool |
Resume the download from existing tmp file if possible. Defaults to False. |
False |
unzip |
bool |
Unzip the file. Defaults to True. |
True |
overwrite |
bool |
Overwrite the file if it already exists. Defaults to False. |
False |
subfolder |
bool |
Create a subfolder with the same name as the file. Defaults to False. |
False |
multi_part |
bool |
If the file is a multi-part file. Defaults to False. |
False |
Examples:
files = ["sam_hq_vit_tiny.zip", "sam_hq_vit_tiny.z01", "sam_hq_vit_tiny.z02", "sam_hq_vit_tiny.z03"] base_url = "https://github.com/opengeos/datasets/releases/download/models/" urls = [base_url + f for f in files] leafmap.download_files(urls, out_dir="models", multi_part=True)
Source code in samgeo/common.py
def download_files(
urls,
out_dir=None,
filenames=None,
quiet=False,
proxy=None,
speed=None,
use_cookies=True,
verify=True,
id=None,
fuzzy=False,
resume=False,
unzip=True,
overwrite=False,
subfolder=False,
multi_part=False,
):
"""Download files from URLs, including Google Drive shared URL.
Args:
urls (list): The list of urls to download. Google Drive URL is also supported.
out_dir (str, optional): The output directory. Defaults to None.
filenames (list, optional): Output filename. Default is basename of URL.
quiet (bool, optional): Suppress terminal output. Default is False.
proxy (str, optional): Proxy. Defaults to None.
speed (float, optional): Download byte size per second (e.g., 256KB/s = 256 * 1024). Defaults to None.
use_cookies (bool, optional): Flag to use cookies. Defaults to True.
verify (bool | str, optional): Either a bool, in which case it controls whether the server's TLS certificate is verified, or a string, in which case it must be a path to a CA bundle to use. Default is True.. Defaults to True.
id (str, optional): Google Drive's file ID. Defaults to None.
fuzzy (bool, optional): Fuzzy extraction of Google Drive's file Id. Defaults to False.
resume (bool, optional): Resume the download from existing tmp file if possible. Defaults to False.
unzip (bool, optional): Unzip the file. Defaults to True.
overwrite (bool, optional): Overwrite the file if it already exists. Defaults to False.
subfolder (bool, optional): Create a subfolder with the same name as the file. Defaults to False.
multi_part (bool, optional): If the file is a multi-part file. Defaults to False.
Examples:
files = ["sam_hq_vit_tiny.zip", "sam_hq_vit_tiny.z01", "sam_hq_vit_tiny.z02", "sam_hq_vit_tiny.z03"]
base_url = "https://github.com/opengeos/datasets/releases/download/models/"
urls = [base_url + f for f in files]
leafmap.download_files(urls, out_dir="models", multi_part=True)
"""
if out_dir is None:
out_dir = os.getcwd()
if filenames is None:
filenames = [None] * len(urls)
filepaths = []
for url, output in zip(urls, filenames):
if output is None:
filename = os.path.join(out_dir, os.path.basename(url))
else:
filename = os.path.join(out_dir, output)
filepaths.append(filename)
if multi_part:
unzip = False
download_file(
url,
filename,
quiet,
proxy,
speed,
use_cookies,
verify,
id,
fuzzy,
resume,
unzip,
overwrite,
subfolder,
)
if multi_part:
archive = os.path.splitext(filename)[0] + ".zip"
out_dir = os.path.dirname(filename)
extract_archive(archive, out_dir)
for file in filepaths:
os.remove(file)
extract_archive(archive, outdir=None, **kwargs)
¶
Extracts a multipart archive.
This function uses the patoolib library to extract a multipart archive. If the patoolib library is not installed, it attempts to install it. If the archive does not end with ".zip", it appends ".zip" to the archive name. If the extraction fails (for example, if the files already exist), it skips the extraction.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
archive |
str |
The path to the archive file. |
required |
outdir |
str |
The directory where the archive should be extracted. |
None |
**kwargs |
Arbitrary keyword arguments for the patoolib.extract_archive function. |
{} |
Returns:
Type | Description |
---|---|
None |
Exceptions:
Type | Description |
---|---|
Exception |
An exception is raised if the extraction fails for reasons other than the files already existing. |
Examples:
files = ["sam_hq_vit_tiny.zip", "sam_hq_vit_tiny.z01", "sam_hq_vit_tiny.z02", "sam_hq_vit_tiny.z03"] base_url = "https://github.com/opengeos/datasets/releases/download/models/" urls = [base_url + f for f in files] leafmap.download_files(urls, out_dir="models", multi_part=True)
Source code in samgeo/common.py
def extract_archive(archive, outdir=None, **kwargs):
"""
Extracts a multipart archive.
This function uses the patoolib library to extract a multipart archive.
If the patoolib library is not installed, it attempts to install it.
If the archive does not end with ".zip", it appends ".zip" to the archive name.
If the extraction fails (for example, if the files already exist), it skips the extraction.
Args:
archive (str): The path to the archive file.
outdir (str): The directory where the archive should be extracted.
**kwargs: Arbitrary keyword arguments for the patoolib.extract_archive function.
Returns:
None
Raises:
Exception: An exception is raised if the extraction fails for reasons other than the files already existing.
Example:
files = ["sam_hq_vit_tiny.zip", "sam_hq_vit_tiny.z01", "sam_hq_vit_tiny.z02", "sam_hq_vit_tiny.z03"]
base_url = "https://github.com/opengeos/datasets/releases/download/models/"
urls = [base_url + f for f in files]
leafmap.download_files(urls, out_dir="models", multi_part=True)
"""
try:
import patoolib
except ImportError:
install_package("patool")
import patoolib
if not archive.endswith(".zip"):
archive = archive + ".zip"
if outdir is None:
outdir = os.path.dirname(archive)
try:
patoolib.extract_archive(archive, outdir=outdir, **kwargs)
except Exception as e:
print("The unzipped files might already exist. Skipping extraction.")
return
geojson_to_coords(geojson, src_crs='epsg:4326', dst_crs='epsg:4326')
¶
Converts a geojson file or a dictionary of feature collection to a list of centroid coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
geojson |
str | dict |
The geojson file path or a dictionary of feature collection. |
required |
src_crs |
str |
The source CRS. Defaults to "epsg:4326". |
'epsg:4326' |
dst_crs |
str |
The destination CRS. Defaults to "epsg:4326". |
'epsg:4326' |
Returns:
Type | Description |
---|---|
list |
A list of centroid coordinates in the format of [[x1, y1], [x2, y2], ...] |
Source code in samgeo/common.py
def geojson_to_coords(
geojson: str, src_crs: str = "epsg:4326", dst_crs: str = "epsg:4326"
) -> list:
"""Converts a geojson file or a dictionary of feature collection to a list of centroid coordinates.
Args:
geojson (str | dict): The geojson file path or a dictionary of feature collection.
src_crs (str, optional): The source CRS. Defaults to "epsg:4326".
dst_crs (str, optional): The destination CRS. Defaults to "epsg:4326".
Returns:
list: A list of centroid coordinates in the format of [[x1, y1], [x2, y2], ...]
"""
import json
import warnings
warnings.filterwarnings("ignore")
if isinstance(geojson, dict):
geojson = json.dumps(geojson)
gdf = gpd.read_file(geojson, driver="GeoJSON")
centroids = gdf.geometry.centroid
centroid_list = [[point.x, point.y] for point in centroids]
if src_crs != dst_crs:
centroid_list = transform_coords(
[x[0] for x in centroid_list],
[x[1] for x in centroid_list],
src_crs,
dst_crs,
)
centroid_list = [[x, y] for x, y in zip(centroid_list[0], centroid_list[1])]
return centroid_list
geojson_to_xy(src_fp, geojson, coord_crs='epsg:4326', **kwargs)
¶
Converts a geojson file or a dictionary of feature collection to a list of pixel coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_fp |
str |
The source raster file path. |
required |
geojson |
str |
The geojson file path or a dictionary of feature collection. |
required |
coord_crs |
str |
The coordinate CRS of the input coordinates. Defaults to "epsg:4326". |
'epsg:4326' |
**kwargs |
Additional keyword arguments to pass to rasterio.transform.rowcol. |
{} |
Returns:
Type | Description |
---|---|
list |
A list of pixel coordinates in the format of [[x1, y1], [x2, y2], ...] |
Source code in samgeo/common.py
def geojson_to_xy(
src_fp: str, geojson: str, coord_crs: str = "epsg:4326", **kwargs
) -> list:
"""Converts a geojson file or a dictionary of feature collection to a list of pixel coordinates.
Args:
src_fp: The source raster file path.
geojson: The geojson file path or a dictionary of feature collection.
coord_crs: The coordinate CRS of the input coordinates. Defaults to "epsg:4326".
**kwargs: Additional keyword arguments to pass to rasterio.transform.rowcol.
Returns:
A list of pixel coordinates in the format of [[x1, y1], [x2, y2], ...]
"""
with rasterio.open(src_fp) as src:
src_crs = src.crs
coords = geojson_to_coords(geojson, coord_crs, src_crs)
return coords_to_xy(src_fp, coords, src_crs, **kwargs)
geotiff_to_jpg(geotiff_path, output_path)
¶
Convert a GeoTIFF file to a JPG file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
geotiff_path |
str |
The path to the input GeoTIFF file. |
required |
output_path |
str |
The path to the output JPG file. |
required |
Source code in samgeo/common.py
def geotiff_to_jpg(geotiff_path: str, output_path: str) -> None:
"""Convert a GeoTIFF file to a JPG file.
Args:
geotiff_path (str): The path to the input GeoTIFF file.
output_path (str): The path to the output JPG file.
"""
from PIL import Image
# Open the GeoTIFF file
with rasterio.open(geotiff_path) as src:
# Read the first band (for grayscale) or all bands
array = src.read()
# If the array has more than 3 bands, reduce it to the first 3 (RGB)
if array.shape[0] >= 3:
array = array[:3, :, :] # Select the first 3 bands (R, G, B)
elif array.shape[0] == 1:
# For single-band images, repeat the band to create a grayscale RGB
array = np.repeat(array, 3, axis=0)
# Transpose the array from (bands, height, width) to (height, width, bands)
array = np.transpose(array, (1, 2, 0))
# Normalize the array to 8-bit (0-255) range for JPG
array = array.astype(np.float32)
array -= array.min()
array /= array.max()
array *= 255
array = array.astype(np.uint8)
# Convert to a PIL Image and save as JPG
image = Image.fromarray(array)
image.save(output_path)
geotiff_to_jpg_batch(input_folder, output_folder=None)
¶
Convert all GeoTIFF files in a folder to JPG files.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_folder |
str |
The path to the folder containing GeoTIFF files. |
required |
output_folder |
str |
The path to the folder to save the output JPG files. |
None |
Returns:
Type | Description |
---|---|
str |
The path to the output folder containing the JPG files. |
Source code in samgeo/common.py
def geotiff_to_jpg_batch(input_folder: str, output_folder: str = None) -> str:
"""Convert all GeoTIFF files in a folder to JPG files.
Args:
input_folder (str): The path to the folder containing GeoTIFF files.
output_folder (str): The path to the folder to save the output JPG files.
Returns:
str: The path to the output folder containing the JPG files.
"""
if output_folder is None:
output_folder = make_temp_dir()
if not os.path.exists(output_folder):
os.makedirs(output_folder)
geotiff_files = [
f for f in os.listdir(input_folder) if f.endswith(".tif") or f.endswith(".tiff")
]
# Initialize tqdm progress bar
for filename in tqdm(geotiff_files, desc="Converting GeoTIFF to JPG"):
geotiff_path = os.path.join(input_folder, filename)
jpg_filename = os.path.splitext(filename)[0] + ".jpg"
output_path = os.path.join(output_folder, jpg_filename)
geotiff_to_jpg(geotiff_path, output_path)
return output_folder
get_basemaps(free_only=True)
¶
Returns a dictionary of xyz basemaps.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
free_only |
bool |
Whether to return only free xyz tile services that do not require an access token. Defaults to True. |
True |
Returns:
Type | Description |
---|---|
dict |
A dictionary of xyz basemaps. |
Source code in samgeo/common.py
def get_basemaps(free_only=True):
"""Returns a dictionary of xyz basemaps.
Args:
free_only (bool, optional): Whether to return only free xyz tile services that do not require an access token. Defaults to True.
Returns:
dict: A dictionary of xyz basemaps.
"""
basemaps = {}
xyz_dict = get_xyz_dict(free_only=free_only)
for item in xyz_dict:
name = xyz_dict[item].name
url = xyz_dict[item].build_url()
basemaps[name] = url
return basemaps
get_vector_crs(filename, **kwargs)
¶
Gets the CRS of a vector file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
The vector file path. |
required |
Returns:
Type | Description |
---|---|
str |
The CRS of the vector file. |
Source code in samgeo/common.py
def get_vector_crs(filename, **kwargs):
"""Gets the CRS of a vector file.
Args:
filename (str): The vector file path.
Returns:
str: The CRS of the vector file.
"""
gdf = gpd.read_file(filename, **kwargs)
epsg = gdf.crs.to_epsg()
if epsg is None:
return gdf.crs
else:
return f"EPSG:{epsg}"
get_xyz_dict(free_only=True)
¶
Returns a dictionary of xyz services.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
free_only |
bool |
Whether to return only free xyz tile services that do not require an access token. Defaults to True. |
True |
Returns:
Type | Description |
---|---|
dict |
A dictionary of xyz services. |
Source code in samgeo/common.py
def get_xyz_dict(free_only=True):
"""Returns a dictionary of xyz services.
Args:
free_only (bool, optional): Whether to return only free xyz tile services that do not require an access token. Defaults to True.
Returns:
dict: A dictionary of xyz services.
"""
import collections
import xyzservices.providers as xyz
def _unpack_sub_parameters(var, param):
temp = var
for sub_param in param.split("."):
temp = getattr(temp, sub_param)
return temp
xyz_dict = {}
for item in xyz.values():
try:
name = item["name"]
tile = _unpack_sub_parameters(xyz, name)
if _unpack_sub_parameters(xyz, name).requires_token():
if free_only:
pass
else:
xyz_dict[name] = tile
else:
xyz_dict[name] = tile
except Exception:
for sub_item in item:
name = item[sub_item]["name"]
tile = _unpack_sub_parameters(xyz, name)
if _unpack_sub_parameters(xyz, name).requires_token():
if free_only:
pass
else:
xyz_dict[name] = tile
else:
xyz_dict[name] = tile
xyz_dict = collections.OrderedDict(sorted(xyz_dict.items()))
return xyz_dict
github_raw_url(url)
¶
Get the raw URL for a GitHub file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
url |
str |
The GitHub URL. |
required |
Returns:
Type | Description |
---|---|
str |
The raw URL. |
Source code in samgeo/common.py
def github_raw_url(url):
"""Get the raw URL for a GitHub file.
Args:
url (str): The GitHub URL.
Returns:
str: The raw URL.
"""
if isinstance(url, str) and url.startswith("https://github.com/") and "blob" in url:
url = url.replace("github.com", "raw.githubusercontent.com").replace(
"blob/", ""
)
return url
image_to_cog(source, dst_path=None, profile='deflate', **kwargs)
¶
Converts an image to a COG file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str |
A dataset path, URL or rasterio.io.DatasetReader object. |
required |
dst_path |
str |
An output dataset path or or PathLike object. Defaults to None. |
None |
profile |
str |
COG profile. More at https://cogeotiff.github.io/rio-cogeo/profile. Defaults to "deflate". |
'deflate' |
Exceptions:
Type | Description |
---|---|
ImportError |
If rio-cogeo is not installed. |
FileNotFoundError |
If the source file could not be found. |
Source code in samgeo/common.py
def image_to_cog(source, dst_path=None, profile="deflate", **kwargs):
"""Converts an image to a COG file.
Args:
source (str): A dataset path, URL or rasterio.io.DatasetReader object.
dst_path (str, optional): An output dataset path or or PathLike object. Defaults to None.
profile (str, optional): COG profile. More at https://cogeotiff.github.io/rio-cogeo/profile. Defaults to "deflate".
Raises:
ImportError: If rio-cogeo is not installed.
FileNotFoundError: If the source file could not be found.
"""
try:
from rio_cogeo.cogeo import cog_translate
from rio_cogeo.profiles import cog_profiles
except ImportError:
raise ImportError(
"The rio-cogeo package is not installed. Please install it with `pip install rio-cogeo` or `conda install rio-cogeo -c conda-forge`."
)
if not source.startswith("http"):
source = check_file_path(source)
if not os.path.exists(source):
raise FileNotFoundError("The provided input file could not be found.")
if dst_path is None:
if not source.startswith("http"):
dst_path = os.path.splitext(source)[0] + "_cog.tif"
else:
dst_path = temp_file_path(extension=".tif")
dst_path = check_file_path(dst_path)
dst_profile = cog_profiles.get(profile)
cog_translate(source, dst_path, dst_profile, **kwargs)
images_to_video(images, output_video, fps=30, video_size=None)
¶
Converts a series of images into a video. The input can be either a directory containing the images or a list of image file paths.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
images |
Union[str, List[str]] |
A directory containing images or a list of image file paths. |
required |
output_video |
str |
The filename of the output video (e.g., 'output.mp4'). |
required |
fps |
int |
Frames per second for the output video. Default is 30. |
30 |
video_size |
Optional[tuple] |
The size (width, height) of the video. If not provided, the size of the first image is used. |
None |
Exceptions:
Type | Description |
---|---|
ValueError |
If the provided path is not a directory, if the images list is empty, or if the first image cannot be read. |
Example usage: images_to_video('path_to_image_directory', 'output_video.mp4', fps=30, video_size=(1280, 720)) images_to_video(['image1.jpg', 'image2.jpg', 'image3.jpg'], 'output_video.mp4', fps=30)
Source code in samgeo/common.py
def images_to_video(
images: Union[str, List[str]],
output_video: str,
fps: int = 30,
video_size: Optional[tuple] = None,
) -> None:
"""
Converts a series of images into a video. The input can be either a directory
containing the images or a list of image file paths.
Args:
images (Union[str, List[str]]): A directory containing images or a list
of image file paths.
output_video (str): The filename of the output video (e.g., 'output.mp4').
fps (int, optional): Frames per second for the output video. Default is 30.
video_size (Optional[tuple], optional): The size (width, height) of the
video. If not provided, the size of the first image is used.
Raises:
ValueError: If the provided path is not a directory, if the images list
is empty, or if the first image cannot be read.
Example usage:
images_to_video('path_to_image_directory', 'output_video.mp4', fps=30, video_size=(1280, 720))
images_to_video(['image1.jpg', 'image2.jpg', 'image3.jpg'], 'output_video.mp4', fps=30)
"""
if isinstance(images, str):
if not os.path.isdir(images):
raise ValueError(f"The provided path {images} is not a valid directory.")
# Get all image files in the directory (sorted by filename)
files = sorted(os.listdir(images))
if len(files) == 0:
raise ValueError(f"No image files found in the directory {images}")
elif files[0].endswith(".tif"):
images = geotiff_to_jpg_batch(images)
images = [
os.path.join(images, img)
for img in sorted(os.listdir(images))
if img.endswith((".jpg", ".png"))
]
if not isinstance(images, list) or not images:
raise ValueError(
"The images parameter should either be a non-empty list of image paths or a valid directory."
)
# Read the first image to get the dimensions if video_size is not provided
first_image_path = images[0]
frame = cv2.imread(first_image_path)
if frame is None:
raise ValueError(f"Error reading the first image {first_image_path}")
if video_size is None:
height, width, _ = frame.shape
video_size = (width, height)
fourcc = cv2.VideoWriter_fourcc(*"avc1") # Define the codec for mp4
video_writer = cv2.VideoWriter(output_video, fourcc, fps, video_size)
for image_path in images:
frame = cv2.imread(image_path)
if frame is None:
print(f"Warning: Could not read image {image_path}. Skipping.")
continue
if video_size != (frame.shape[1], frame.shape[0]):
frame = cv2.resize(frame, video_size)
video_writer.write(frame)
video_writer.release()
print(f"Video saved as {output_video}")
install_package(package)
¶
Install a Python package.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
package |
str | list |
The package name or a GitHub URL or a list of package names or GitHub URLs. |
required |
Source code in samgeo/common.py
def install_package(package):
"""Install a Python package.
Args:
package (str | list): The package name or a GitHub URL or a list of package names or GitHub URLs.
"""
import subprocess
if isinstance(package, str):
packages = [package]
for package in packages:
if package.startswith("https://github.com"):
package = f"git+{package}"
# Execute pip install command and show output in real-time
command = f"pip install {package}"
process = subprocess.Popen(command.split(), stdout=subprocess.PIPE)
# Print output in real-time
while True:
output = process.stdout.readline()
if output == b"" and process.poll() is not None:
break
if output:
print(output.decode("utf-8").strip())
# Wait for process to complete
process.wait()
is_colab()
¶
Tests if the code is being executed within Google Colab.
Source code in samgeo/common.py
def is_colab():
"""Tests if the code is being executed within Google Colab."""
import sys
if "google.colab" in sys.modules:
return True
else:
return False
make_temp_dir(**kwargs)
¶
Create a temporary directory and return the path.
Returns:
Type | Description |
---|---|
str |
The path to the temporary directory. |
Source code in samgeo/common.py
def make_temp_dir(**kwargs) -> str:
"""Create a temporary directory and return the path.
Returns:
str: The path to the temporary directory.
"""
import tempfile
temp_dir = tempfile.mkdtemp(**kwargs)
return temp_dir
merge_rasters(input_dir, output, input_pattern='*.tif', output_format='GTiff', output_nodata=None, output_options=['COMPRESS=DEFLATE'])
¶
Merge a directory of rasters into a single raster.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
input_dir |
str |
The path to the input directory. |
required |
output |
str |
The path to the output raster. |
required |
input_pattern |
str |
The pattern to match the input files. Defaults to "*.tif". |
'*.tif' |
output_format |
str |
The output format. Defaults to "GTiff". |
'GTiff' |
output_nodata |
float |
The output nodata value. Defaults to None. |
None |
output_options |
list |
A list of output options. Defaults to ["COMPRESS=DEFLATE"]. |
['COMPRESS=DEFLATE'] |
Exceptions:
Type | Description |
---|---|
ImportError |
Raised if GDAL is not installed. |
Source code in samgeo/common.py
def merge_rasters(
input_dir,
output,
input_pattern="*.tif",
output_format="GTiff",
output_nodata=None,
output_options=["COMPRESS=DEFLATE"],
):
"""Merge a directory of rasters into a single raster.
Args:
input_dir (str): The path to the input directory.
output (str): The path to the output raster.
input_pattern (str, optional): The pattern to match the input files. Defaults to "*.tif".
output_format (str, optional): The output format. Defaults to "GTiff".
output_nodata (float, optional): The output nodata value. Defaults to None.
output_options (list, optional): A list of output options. Defaults to ["COMPRESS=DEFLATE"].
Raises:
ImportError: Raised if GDAL is not installed.
"""
import glob
try:
from osgeo import gdal
except ImportError:
raise ImportError(
"GDAL is required to use this function. Install it with `conda install gdal -c conda-forge`"
)
# Get a list of all the input files
input_files = glob.glob(os.path.join(input_dir, input_pattern))
# Prepare the gdal.Warp options
warp_options = gdal.WarpOptions(
format=output_format, dstNodata=output_nodata, creationOptions=output_options
)
# Merge the input files into a single output file
gdal.Warp(
destNameOrDestDS=output,
srcDSOrSrcDSTab=input_files,
options=warp_options,
)
overlay_images(image1, image2, alpha=0.5, backend='TkAgg', height_ratios=[10, 1], show_args1={}, show_args2={})
¶
Overlays two images using a slider to control the opacity of the top image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image1 |
str | np.ndarray |
The first input image at the bottom represented as a NumPy array or the path to the image. |
required |
image2 |
_type_ |
The second input image on top represented as a NumPy array or the path to the image. |
required |
alpha |
float |
The alpha value of the top image. Defaults to 0.5. |
0.5 |
backend |
str |
The backend of the matplotlib plot. Defaults to "TkAgg". |
'TkAgg' |
height_ratios |
list |
The height ratios of the two subplots. Defaults to [10, 1]. |
[10, 1] |
show_args1 |
dict |
The keyword arguments to pass to the imshow() function for the first image. Defaults to {}. |
{} |
show_args2 |
dict |
The keyword arguments to pass to the imshow() function for the second image. Defaults to {}. |
{} |
Source code in samgeo/common.py
def overlay_images(
image1,
image2,
alpha=0.5,
backend="TkAgg",
height_ratios=[10, 1],
show_args1={},
show_args2={},
):
"""Overlays two images using a slider to control the opacity of the top image.
Args:
image1 (str | np.ndarray): The first input image at the bottom represented as a NumPy array or the path to the image.
image2 (_type_): The second input image on top represented as a NumPy array or the path to the image.
alpha (float, optional): The alpha value of the top image. Defaults to 0.5.
backend (str, optional): The backend of the matplotlib plot. Defaults to "TkAgg".
height_ratios (list, optional): The height ratios of the two subplots. Defaults to [10, 1].
show_args1 (dict, optional): The keyword arguments to pass to the imshow() function for the first image. Defaults to {}.
show_args2 (dict, optional): The keyword arguments to pass to the imshow() function for the second image. Defaults to {}.
"""
import sys
import matplotlib
import matplotlib.widgets as mpwidgets
if "google.colab" in sys.modules:
backend = "inline"
print(
"The TkAgg backend is not supported in Google Colab. The overlay_images function will not work on Colab."
)
return
matplotlib.use(backend)
if isinstance(image1, str):
if image1.startswith("http"):
image1 = download_file(image1)
if not os.path.exists(image1):
raise ValueError(f"Input path {image1} does not exist.")
if isinstance(image2, str):
if image2.startswith("http"):
image2 = download_file(image2)
if not os.path.exists(image2):
raise ValueError(f"Input path {image2} does not exist.")
# Load the two images
x = plt.imread(image1)
y = plt.imread(image2)
# Create the plot
fig, (ax0, ax1) = plt.subplots(2, 1, gridspec_kw={"height_ratios": height_ratios})
img0 = ax0.imshow(x, **show_args1)
img1 = ax0.imshow(y, alpha=alpha, **show_args2)
# Define the update function
def update(value):
img1.set_alpha(value)
fig.canvas.draw_idle()
# Create the slider
slider0 = mpwidgets.Slider(ax=ax1, label="alpha", valmin=0, valmax=1, valinit=alpha)
slider0.on_changed(update)
# Display the plot
plt.show()
random_string(string_length=6)
¶
Generates a random string of fixed length.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
string_length |
int |
Fixed length. Defaults to 3. |
6 |
Returns:
Type | Description |
---|---|
str |
A random string |
Source code in samgeo/common.py
def random_string(string_length=6):
"""Generates a random string of fixed length.
Args:
string_length (int, optional): Fixed length. Defaults to 3.
Returns:
str: A random string
"""
import random
import string
# random.seed(1001)
letters = string.ascii_lowercase
return "".join(random.choice(letters) for i in range(string_length))
raster_to_geojson(tiff_path, output, simplify_tolerance=None, **kwargs)
¶
Convert a tiff file to a GeoJSON file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tiff_path |
str |
The path to the tiff file. |
required |
output |
str |
The path to the GeoJSON file. |
required |
simplify_tolerance |
float |
The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. |
None |
Source code in samgeo/common.py
def raster_to_geojson(tiff_path, output, simplify_tolerance=None, **kwargs):
"""Convert a tiff file to a GeoJSON file.
Args:
tiff_path (str): The path to the tiff file.
output (str): The path to the GeoJSON file.
simplify_tolerance (float, optional): The maximum allowed geometry displacement.
The higher this value, the smaller the number of vertices in the resulting geometry.
"""
if not output.endswith(".geojson"):
output += ".geojson"
raster_to_vector(tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs)
raster_to_gpkg(tiff_path, output, simplify_tolerance=None, **kwargs)
¶
Convert a tiff file to a gpkg file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tiff_path |
str |
The path to the tiff file. |
required |
output |
str |
The path to the gpkg file. |
required |
simplify_tolerance |
float |
The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. |
None |
Source code in samgeo/common.py
def raster_to_gpkg(tiff_path, output, simplify_tolerance=None, **kwargs):
"""Convert a tiff file to a gpkg file.
Args:
tiff_path (str): The path to the tiff file.
output (str): The path to the gpkg file.
simplify_tolerance (float, optional): The maximum allowed geometry displacement.
The higher this value, the smaller the number of vertices in the resulting geometry.
"""
if not output.endswith(".gpkg"):
output += ".gpkg"
raster_to_vector(tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs)
raster_to_shp(tiff_path, output, simplify_tolerance=None, **kwargs)
¶
Convert a tiff file to a shapefile.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
tiff_path |
str |
The path to the tiff file. |
required |
output |
str |
The path to the shapefile. |
required |
simplify_tolerance |
float |
The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. |
None |
Source code in samgeo/common.py
def raster_to_shp(tiff_path, output, simplify_tolerance=None, **kwargs):
"""Convert a tiff file to a shapefile.
Args:
tiff_path (str): The path to the tiff file.
output (str): The path to the shapefile.
simplify_tolerance (float, optional): The maximum allowed geometry displacement.
The higher this value, the smaller the number of vertices in the resulting geometry.
"""
if not output.endswith(".shp"):
output += ".shp"
raster_to_vector(tiff_path, output, simplify_tolerance=simplify_tolerance, **kwargs)
raster_to_vector(source, output, simplify_tolerance=None, dst_crs=None, **kwargs)
¶
Vectorize a raster dataset.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str |
The path to the tiff file. |
required |
output |
str |
The path to the vector file. |
required |
simplify_tolerance |
float |
The maximum allowed geometry displacement. The higher this value, the smaller the number of vertices in the resulting geometry. |
None |
Source code in samgeo/common.py
def raster_to_vector(source, output, simplify_tolerance=None, dst_crs=None, **kwargs):
"""Vectorize a raster dataset.
Args:
source (str): The path to the tiff file.
output (str): The path to the vector file.
simplify_tolerance (float, optional): The maximum allowed geometry displacement.
The higher this value, the smaller the number of vertices in the resulting geometry.
"""
from rasterio import features
with rasterio.open(source) as src:
band = src.read()
mask = band != 0
shapes = features.shapes(band, mask=mask, transform=src.transform)
fc = [
{"geometry": shapely.geometry.shape(shape), "properties": {"value": value}}
for shape, value in shapes
]
if simplify_tolerance is not None:
for i in fc:
i["geometry"] = i["geometry"].simplify(tolerance=simplify_tolerance)
gdf = gpd.GeoDataFrame.from_features(fc)
if src.crs is not None:
gdf.set_crs(crs=src.crs, inplace=True)
if dst_crs is not None:
gdf = gdf.to_crs(dst_crs)
gdf.to_file(output, **kwargs)
region_groups(image, connectivity=1, min_size=10, max_size=None, threshold=None, properties=None, intensity_image=None, out_csv=None, out_vector=None, out_image=None, **kwargs)
¶
Segment regions in an image and filter them based on size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
Union[str, xr.DataArray, np.ndarray] |
Input image, can be a file path, xarray DataArray, or numpy array. |
required |
connectivity |
int |
Connectivity for labeling. Defaults to 1 for 4-connectivity. Use 2 for 8-connectivity. |
1 |
min_size |
int |
Minimum size of regions to keep. Defaults to 10. |
10 |
max_size |
Optional[int] |
Maximum size of regions to keep. Defaults to None. |
None |
threshold |
Optional[int] |
Threshold for filling holes. Defaults to None, which is equal to min_size. |
None |
properties |
Optional[List[str]] |
List of properties to measure. See https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops Defaults to None. |
None |
intensity_image |
Optional[Union[str, xr.DataArray, np.ndarray]] |
Intensity image to measure properties. Defaults to None. |
None |
out_csv |
Optional[str] |
Path to save the properties as a CSV file. Defaults to None. |
None |
out_vector |
Optional[str] |
Path to save the vector file. Defaults to None. |
None |
out_image |
Optional[str] |
Path to save the output image. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
Union[Tuple[np.ndarray, pd.DataFrame], Tuple[xr.DataArray, pd.DataFrame]] |
Labeled image and properties DataFrame. |
Source code in samgeo/common.py
def region_groups(
image: Union[str, "xr.DataArray", np.ndarray],
connectivity: int = 1,
min_size: int = 10,
max_size: Optional[int] = None,
threshold: Optional[int] = None,
properties: Optional[List[str]] = None,
intensity_image: Optional[Union[str, "xr.DataArray", np.ndarray]] = None,
out_csv: Optional[str] = None,
out_vector: Optional[str] = None,
out_image: Optional[str] = None,
**kwargs: Any,
) -> Union[Tuple[np.ndarray, "pd.DataFrame"], Tuple["xr.DataArray", "pd.DataFrame"]]:
"""
Segment regions in an image and filter them based on size.
Args:
image (Union[str, xr.DataArray, np.ndarray]): Input image, can be a file
path, xarray DataArray, or numpy array.
connectivity (int, optional): Connectivity for labeling. Defaults to 1
for 4-connectivity. Use 2 for 8-connectivity.
min_size (int, optional): Minimum size of regions to keep. Defaults to 10.
max_size (Optional[int], optional): Maximum size of regions to keep.
Defaults to None.
threshold (Optional[int], optional): Threshold for filling holes.
Defaults to None, which is equal to min_size.
properties (Optional[List[str]], optional): List of properties to measure.
See https://scikit-image.org/docs/stable/api/skimage.measure.html#skimage.measure.regionprops
Defaults to None.
intensity_image (Optional[Union[str, xr.DataArray, np.ndarray]], optional):
Intensity image to measure properties. Defaults to None.
out_csv (Optional[str], optional): Path to save the properties as a CSV file.
Defaults to None.
out_vector (Optional[str], optional): Path to save the vector file.
Defaults to None.
out_image (Optional[str], optional): Path to save the output image.
Defaults to None.
Returns:
Union[Tuple[np.ndarray, pd.DataFrame], Tuple[xr.DataArray, pd.DataFrame]]: Labeled image and properties DataFrame.
"""
import rioxarray as rxr
import xarray as xr
from skimage import measure
import pandas as pd
import scipy.ndimage as ndi
if isinstance(image, str):
ds = rxr.open_rasterio(image)
da = ds.sel(band=1)
array = da.values.squeeze()
elif isinstance(image, xr.DataArray):
da = image
array = image.values.squeeze()
elif isinstance(image, np.ndarray):
array = image
else:
raise ValueError(
"The input image must be a file path, xarray DataArray, or numpy array."
)
if threshold is None:
threshold = min_size
# Define a custom function to calculate median intensity
def intensity_median(region, intensity_image):
# Extract the intensity values for the region
return np.median(intensity_image[region])
# Add your custom function to the list of extra properties
if intensity_image is not None:
extra_props = (intensity_median,)
else:
extra_props = None
if properties is None:
properties = [
"label",
"area",
"area_bbox",
"area_convex",
"area_filled",
"axis_major_length",
"axis_minor_length",
"eccentricity",
"equivalent_diameter_area",
"extent",
"orientation",
"perimeter",
"solidity",
]
if intensity_image is not None:
properties += [
"intensity_max",
"intensity_mean",
"intensity_min",
"intensity_std",
]
if intensity_image is not None:
if isinstance(intensity_image, str):
ds = rxr.open_rasterio(intensity_image)
intensity_da = ds.sel(band=1)
intensity_image = intensity_da.values.squeeze()
elif isinstance(intensity_image, xr.DataArray):
intensity_image = intensity_image.values.squeeze()
elif isinstance(intensity_image, np.ndarray):
pass
else:
raise ValueError(
"The intensity_image must be a file path, xarray DataArray, or numpy array."
)
label_image = measure.label(array, connectivity=connectivity)
props = measure.regionprops_table(
label_image, properties=properties, intensity_image=intensity_image, **kwargs
)
df = pd.DataFrame(props)
# Get the labels of regions with area smaller than the threshold
small_regions = df[df["area"] < min_size]["label"].values
# Set the corresponding labels in the label_image to zero
for region_label in small_regions:
label_image[label_image == region_label] = 0
if max_size is not None:
large_regions = df[df["area"] > max_size]["label"].values
for region_label in large_regions:
label_image[label_image == region_label] = 0
# Find the background (holes) which are zeros
holes = label_image == 0
# Label the holes (connected components in the background)
labeled_holes, _ = ndi.label(holes)
# Measure properties of the labeled holes, including area and bounding box
hole_props = measure.regionprops(labeled_holes)
# Loop through each hole and fill it if it is smaller than the threshold
for prop in hole_props:
if prop.area < threshold:
# Get the coordinates of the small hole
coords = prop.coords
# Find the surrounding region's ID (non-zero value near the hole)
surrounding_region_values = []
for coord in coords:
x, y = coord
# Get a 3x3 neighborhood around the hole pixel
neighbors = label_image[max(0, x - 1) : x + 2, max(0, y - 1) : y + 2]
# Exclude the hole pixels (zeros) and get region values
region_values = neighbors[neighbors != 0]
if region_values.size > 0:
surrounding_region_values.append(
region_values[0]
) # Take the first non-zero value
if surrounding_region_values:
# Fill the hole with the mode (most frequent) of the surrounding region values
fill_value = max(
set(surrounding_region_values), key=surrounding_region_values.count
)
label_image[coords[:, 0], coords[:, 1]] = fill_value
label_image, num_labels = measure.label(
label_image, connectivity=connectivity, return_num=True
)
props = measure.regionprops_table(
label_image,
properties=properties,
intensity_image=intensity_image,
extra_properties=extra_props,
**kwargs,
)
df = pd.DataFrame(props)
df["elongation"] = df["axis_major_length"] / df["axis_minor_length"]
dtype = "uint8"
if num_labels > 255 and num_labels <= 65535:
dtype = "uint16"
elif num_labels > 65535:
dtype = "uint32"
if out_csv is not None:
df.to_csv(out_csv, index=False)
if isinstance(image, np.ndarray):
return label_image, df
else:
da.values = label_image
if out_image is not None:
da.rio.to_raster(out_image, dtype=dtype)
if out_vector is not None:
tmp_vector = temp_file_path(".gpkg")
raster_to_vector(out_image, tmp_vector)
gdf = gpd.read_file(tmp_vector)
gdf["label"] = gdf["value"].astype(int)
gdf.drop(columns=["value"], inplace=True)
gdf2 = pd.merge(gdf, df, on="label", how="left")
gdf2.to_file(out_vector)
gdf2.sort_values("label", inplace=True)
df = gdf2
return da, df
regularize(source, output=None, crs='EPSG:4326', **kwargs)
¶
Regularize a polygon GeoDataFrame.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
source |
str | gpd.GeoDataFrame |
The input file path or a GeoDataFrame. |
required |
output |
str |
The output file path. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
gpd.GeoDataFrame |
The output GeoDataFrame. |
Source code in samgeo/common.py
def regularize(source, output=None, crs="EPSG:4326", **kwargs):
"""Regularize a polygon GeoDataFrame.
Args:
source (str | gpd.GeoDataFrame): The input file path or a GeoDataFrame.
output (str, optional): The output file path. Defaults to None.
Returns:
gpd.GeoDataFrame: The output GeoDataFrame.
"""
if isinstance(source, str):
gdf = gpd.read_file(source)
elif isinstance(source, gpd.GeoDataFrame):
gdf = source
else:
raise ValueError("The input source must be a GeoDataFrame or a file path.")
polygons = gdf.geometry.apply(lambda geom: geom.minimum_rotated_rectangle)
result = gpd.GeoDataFrame(geometry=polygons, data=gdf.drop("geometry", axis=1))
if crs is not None:
result.to_crs(crs, inplace=True)
if output is not None:
result.to_file(output, **kwargs)
else:
return result
reproject(image, output, dst_crs='EPSG:4326', resampling='nearest', to_cog=True, **kwargs)
¶
Reprojects an image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
str |
The input image filepath. |
required |
output |
str |
The output image filepath. |
required |
dst_crs |
str |
The destination CRS. Defaults to "EPSG:4326". |
'EPSG:4326' |
resampling |
Resampling |
The resampling method. Defaults to "nearest". |
'nearest' |
to_cog |
bool |
Whether to convert the output image to a Cloud Optimized GeoTIFF. Defaults to True. |
True |
**kwargs |
Additional keyword arguments to pass to rasterio.open. |
{} |
Source code in samgeo/common.py
def reproject(
image, output, dst_crs="EPSG:4326", resampling="nearest", to_cog=True, **kwargs
):
"""Reprojects an image.
Args:
image (str): The input image filepath.
output (str): The output image filepath.
dst_crs (str, optional): The destination CRS. Defaults to "EPSG:4326".
resampling (Resampling, optional): The resampling method. Defaults to "nearest".
to_cog (bool, optional): Whether to convert the output image to a Cloud Optimized GeoTIFF. Defaults to True.
**kwargs: Additional keyword arguments to pass to rasterio.open.
"""
import rasterio as rio
from rasterio.warp import calculate_default_transform, reproject, Resampling
if isinstance(resampling, str):
resampling = getattr(Resampling, resampling)
image = os.path.abspath(image)
output = os.path.abspath(output)
if not os.path.exists(os.path.dirname(output)):
os.makedirs(os.path.dirname(output))
with rio.open(image, **kwargs) as src:
transform, width, height = calculate_default_transform(
src.crs, dst_crs, src.width, src.height, *src.bounds
)
kwargs = src.meta.copy()
kwargs.update(
{
"crs": dst_crs,
"transform": transform,
"width": width,
"height": height,
}
)
with rio.open(output, "w", **kwargs) as dst:
for i in range(1, src.count + 1):
reproject(
source=rio.band(src, i),
destination=rio.band(dst, i),
src_transform=src.transform,
src_crs=src.crs,
dst_transform=transform,
dst_crs=dst_crs,
resampling=resampling,
**kwargs,
)
if to_cog:
image_to_cog(output, output)
rowcol_to_xy(src_fp, rows=None, cols=None, boxes=None, zs=None, offset='center', output=None, dst_crs='EPSG:4326', **kwargs)
¶
Converts a list of (row, col) coordinates to (x, y) coordinates.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
src_fp |
str |
The source raster file path. |
required |
rows |
list |
A list of row coordinates. Defaults to None. |
None |
cols |
list |
A list of col coordinates. Defaults to None. |
None |
boxes |
list |
A list of (row, col) coordinates in the format of [[left, top, right, bottom], [left, top, right, bottom], ...] |
None |
zs |
zs (list or float, optional): Height associated with coordinates. Primarily used for RPC based coordinate transformations. |
None |
|
offset |
str |
Determines if the returned coordinates are for the center of the pixel or for a corner. |
'center' |
output |
str |
The output vector file path. Defaults to None. |
None |
dst_crs |
str |
The destination CRS. Defaults to "EPSG:4326". |
'EPSG:4326' |
**kwargs |
Additional keyword arguments to pass to rasterio.transform.xy. |
{} |
Returns:
Type | Description |
---|---|
A list of (x, y) coordinates. |
Source code in samgeo/common.py
def rowcol_to_xy(
src_fp,
rows=None,
cols=None,
boxes=None,
zs=None,
offset="center",
output=None,
dst_crs="EPSG:4326",
**kwargs,
):
"""Converts a list of (row, col) coordinates to (x, y) coordinates.
Args:
src_fp (str): The source raster file path.
rows (list, optional): A list of row coordinates. Defaults to None.
cols (list, optional): A list of col coordinates. Defaults to None.
boxes (list, optional): A list of (row, col) coordinates in the format of [[left, top, right, bottom], [left, top, right, bottom], ...]
zs: zs (list or float, optional): Height associated with coordinates. Primarily used for RPC based coordinate transformations.
offset (str, optional): Determines if the returned coordinates are for the center of the pixel or for a corner.
output (str, optional): The output vector file path. Defaults to None.
dst_crs (str, optional): The destination CRS. Defaults to "EPSG:4326".
**kwargs: Additional keyword arguments to pass to rasterio.transform.xy.
Returns:
A list of (x, y) coordinates.
"""
if boxes is not None:
rows = []
cols = []
for box in boxes:
rows.append(box[1])
rows.append(box[3])
cols.append(box[0])
cols.append(box[2])
if rows is None or cols is None:
raise ValueError("rows and cols must be provided.")
with rasterio.open(src_fp) as src:
xs, ys = rasterio.transform.xy(src.transform, rows, cols, zs, offset, **kwargs)
src_crs = src.crs
if boxes is None:
return [[x, y] for x, y in zip(xs, ys)]
else:
result = [[xs[i], ys[i + 1], xs[i + 1], ys[i]] for i in range(0, len(xs), 2)]
if output is not None:
boxes_to_vector(result, src_crs, dst_crs, output)
else:
return result
sam_map_gui(sam, basemap='SATELLITE', repeat_mode=True, out_dir=None, **kwargs)
¶
Display the SAM Map GUI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sam |
SamGeo |
required | |
basemap |
str |
The basemap to use. Defaults to "SATELLITE". |
'SATELLITE' |
repeat_mode |
bool |
Whether to use the repeat mode for the draw control. Defaults to True. |
True |
out_dir |
str |
The output directory. Defaults to None. |
None |
Source code in samgeo/common.py
def sam_map_gui(sam, basemap="SATELLITE", repeat_mode=True, out_dir=None, **kwargs):
"""Display the SAM Map GUI.
Args:
sam (SamGeo):
basemap (str, optional): The basemap to use. Defaults to "SATELLITE".
repeat_mode (bool, optional): Whether to use the repeat mode for the draw control. Defaults to True.
out_dir (str, optional): The output directory. Defaults to None.
"""
try:
import shutil
import tempfile
import leafmap
import ipyleaflet
import ipyevents
import ipywidgets as widgets
from ipyfilechooser import FileChooser
except ImportError:
raise ImportError(
"The sam_map function requires the leafmap package. Please install it first."
)
if out_dir is None:
out_dir = tempfile.gettempdir()
m = leafmap.Map(repeat_mode=repeat_mode, **kwargs)
m.default_style = {"cursor": "crosshair"}
m.add_basemap(basemap, show=False)
# Skip the image layer if localtileserver is not available
try:
m.add_raster(sam.source, layer_name="Image")
except:
pass
m.fg_markers = []
m.bg_markers = []
fg_layer = ipyleaflet.LayerGroup(layers=m.fg_markers, name="Foreground")
bg_layer = ipyleaflet.LayerGroup(layers=m.bg_markers, name="Background")
m.add(fg_layer)
m.add(bg_layer)
m.fg_layer = fg_layer
m.bg_layer = bg_layer
widget_width = "280px"
button_width = "90px"
padding = "0px 0px 0px 4px" # upper, right, bottom, left
style = {"description_width": "initial"}
toolbar_button = widgets.ToggleButton(
value=True,
tooltip="Toolbar",
icon="gear",
layout=widgets.Layout(width="28px", height="28px", padding=padding),
)
close_button = widgets.ToggleButton(
value=False,
tooltip="Close the tool",
icon="times",
button_style="primary",
layout=widgets.Layout(height="28px", width="28px", padding=padding),
)
plus_button = widgets.ToggleButton(
value=False,
tooltip="Load foreground points",
icon="plus-circle",
button_style="primary",
layout=widgets.Layout(height="28px", width="28px", padding=padding),
)
minus_button = widgets.ToggleButton(
value=False,
tooltip="Load background points",
icon="minus-circle",
button_style="primary",
layout=widgets.Layout(height="28px", width="28px", padding=padding),
)
radio_buttons = widgets.RadioButtons(
options=["Foreground", "Background"],
description="Class Type:",
disabled=False,
style=style,
layout=widgets.Layout(width=widget_width, padding=padding),
)
fg_count = widgets.IntText(
value=0,
description="Foreground #:",
disabled=True,
style=style,
layout=widgets.Layout(width="135px", padding=padding),
)
bg_count = widgets.IntText(
value=0,
description="Background #:",
disabled=True,
style=style,
layout=widgets.Layout(width="135px", padding=padding),
)
segment_button = widgets.ToggleButton(
description="Segment",
value=False,
button_style="primary",
layout=widgets.Layout(padding=padding),
)
save_button = widgets.ToggleButton(
description="Save", value=False, button_style="primary"
)
reset_button = widgets.ToggleButton(
description="Reset", value=False, button_style="primary"
)
segment_button.layout.width = button_width
save_button.layout.width = button_width
reset_button.layout.width = button_width
opacity_slider = widgets.FloatSlider(
description="Mask opacity:",
min=0,
max=1,
value=0.7,
readout=True,
continuous_update=True,
layout=widgets.Layout(width=widget_width, padding=padding),
style=style,
)
rectangular = widgets.Checkbox(
value=False,
description="Regularize",
layout=widgets.Layout(width="130px", padding=padding),
style=style,
)
colorpicker = widgets.ColorPicker(
concise=False,
description="Color",
value="#ffff00",
layout=widgets.Layout(width="140px", padding=padding),
style=style,
)
buttons = widgets.VBox(
[
radio_buttons,
widgets.HBox([fg_count, bg_count]),
opacity_slider,
widgets.HBox([rectangular, colorpicker]),
widgets.HBox(
[segment_button, save_button, reset_button],
layout=widgets.Layout(padding="0px 4px 0px 4px"),
),
]
)
def opacity_changed(change):
if change["new"]:
mask_layer = m.find_layer("Masks")
if mask_layer is not None:
mask_layer.interact(opacity=opacity_slider.value)
opacity_slider.observe(opacity_changed, "value")
output = widgets.Output(
layout=widgets.Layout(
width=widget_width, padding=padding, max_width=widget_width
)
)
toolbar_header = widgets.HBox()
toolbar_header.children = [close_button, plus_button, minus_button, toolbar_button]
toolbar_footer = widgets.VBox()
toolbar_footer.children = [
buttons,
output,
]
toolbar_widget = widgets.VBox()
toolbar_widget.children = [toolbar_header, toolbar_footer]
toolbar_event = ipyevents.Event(
source=toolbar_widget, watched_events=["mouseenter", "mouseleave"]
)
def marker_callback(chooser):
with output:
if chooser.selected is not None:
try:
gdf = gpd.read_file(chooser.selected)
centroids = gdf.centroid
coords = [[point.x, point.y] for point in centroids]
for coord in coords:
if plus_button.value:
if is_colab(): # Colab does not support AwesomeIcon
marker = ipyleaflet.CircleMarker(
location=(coord[1], coord[0]),
radius=2,
color="green",
fill_color="green",
)
else:
marker = ipyleaflet.Marker(
location=[coord[1], coord[0]],
icon=ipyleaflet.AwesomeIcon(
name="plus-circle",
marker_color="green",
icon_color="darkred",
),
)
m.fg_layer.add(marker)
m.fg_markers.append(marker)
fg_count.value = len(m.fg_markers)
elif minus_button.value:
if is_colab():
marker = ipyleaflet.CircleMarker(
location=(coord[1], coord[0]),
radius=2,
color="red",
fill_color="red",
)
else:
marker = ipyleaflet.Marker(
location=[coord[1], coord[0]],
icon=ipyleaflet.AwesomeIcon(
name="minus-circle",
marker_color="red",
icon_color="darkred",
),
)
m.bg_layer.add(marker)
m.bg_markers.append(marker)
bg_count.value = len(m.bg_markers)
except Exception as e:
print(e)
if m.marker_control in m.controls:
m.remove_control(m.marker_control)
delattr(m, "marker_control")
plus_button.value = False
minus_button.value = False
def marker_button_click(change):
if change["new"]:
sandbox_path = os.environ.get("SANDBOX_PATH")
filechooser = FileChooser(
path=os.getcwd(),
sandbox_path=sandbox_path,
layout=widgets.Layout(width="454px"),
)
filechooser.use_dir_icons = True
filechooser.filter_pattern = ["*.shp", "*.geojson", "*.gpkg"]
filechooser.register_callback(marker_callback)
marker_control = ipyleaflet.WidgetControl(
widget=filechooser, position="topright"
)
m.add_control(marker_control)
m.marker_control = marker_control
else:
if hasattr(m, "marker_control") and m.marker_control in m.controls:
m.remove_control(m.marker_control)
m.marker_control.close()
plus_button.observe(marker_button_click, "value")
minus_button.observe(marker_button_click, "value")
def handle_toolbar_event(event):
if event["type"] == "mouseenter":
toolbar_widget.children = [toolbar_header, toolbar_footer]
elif event["type"] == "mouseleave":
if not toolbar_button.value:
toolbar_widget.children = [toolbar_button]
toolbar_button.value = False
close_button.value = False
toolbar_event.on_dom_event(handle_toolbar_event)
def toolbar_btn_click(change):
if change["new"]:
close_button.value = False
toolbar_widget.children = [toolbar_header, toolbar_footer]
else:
if not close_button.value:
toolbar_widget.children = [toolbar_button]
toolbar_button.observe(toolbar_btn_click, "value")
def close_btn_click(change):
if change["new"]:
toolbar_button.value = False
if m.toolbar_control in m.controls:
m.remove_control(m.toolbar_control)
toolbar_widget.close()
close_button.observe(close_btn_click, "value")
def handle_map_interaction(**kwargs):
try:
if kwargs.get("type") == "click":
latlon = kwargs.get("coordinates")
if radio_buttons.value == "Foreground":
if is_colab():
marker = ipyleaflet.CircleMarker(
location=tuple(latlon),
radius=2,
color="green",
fill_color="green",
)
else:
marker = ipyleaflet.Marker(
location=latlon,
icon=ipyleaflet.AwesomeIcon(
name="plus-circle",
marker_color="green",
icon_color="darkred",
),
)
fg_layer.add(marker)
m.fg_markers.append(marker)
fg_count.value = len(m.fg_markers)
elif radio_buttons.value == "Background":
if is_colab():
marker = ipyleaflet.CircleMarker(
location=tuple(latlon),
radius=2,
color="red",
fill_color="red",
)
else:
marker = ipyleaflet.Marker(
location=latlon,
icon=ipyleaflet.AwesomeIcon(
name="minus-circle",
marker_color="red",
icon_color="darkred",
),
)
bg_layer.add(marker)
m.bg_markers.append(marker)
bg_count.value = len(m.bg_markers)
except (TypeError, KeyError) as e:
print(f"Error handling map interaction: {e}")
m.on_interaction(handle_map_interaction)
def segment_button_click(change):
if change["new"]:
segment_button.value = False
with output:
output.clear_output()
if len(m.fg_markers) == 0:
print("Please add some foreground markers.")
segment_button.value = False
return
else:
try:
fg_points = [
[marker.location[1], marker.location[0]]
for marker in m.fg_markers
]
bg_points = [
[marker.location[1], marker.location[0]]
for marker in m.bg_markers
]
point_coords = fg_points + bg_points
point_labels = [1] * len(fg_points) + [0] * len(bg_points)
filename = f"masks_{random_string()}.tif"
filename = os.path.join(out_dir, filename)
if sam.model_version == "sam":
sam.predict(
point_coords=point_coords,
point_labels=point_labels,
point_crs="EPSG:4326",
output=filename,
)
elif sam.model_version == "sam2":
sam.predict_by_points(
point_coords_batch=point_coords,
point_labels_batch=point_labels,
point_crs="EPSG:4326",
output=filename,
)
if m.find_layer("Masks") is not None:
m.remove_layer(m.find_layer("Masks"))
if m.find_layer("Regularized") is not None:
m.remove_layer(m.find_layer("Regularized"))
if hasattr(sam, "prediction_fp") and os.path.exists(
sam.prediction_fp
):
try:
os.remove(sam.prediction_fp)
except:
pass
# Skip the image layer if localtileserver is not available
try:
m.add_raster(
filename,
nodata=0,
cmap="tab20",
opacity=opacity_slider.value,
layer_name="Masks",
zoom_to_layer=False,
)
if rectangular.value:
vector = filename.replace(".tif", ".gpkg")
vector_rec = filename.replace(".tif", "_rect.gpkg")
raster_to_vector(filename, vector)
regularize(vector, vector_rec)
vector_style = {"color": colorpicker.value}
m.add_vector(
vector_rec,
layer_name="Regularized",
style=vector_style,
info_mode=None,
zoom_to_layer=False,
)
except:
pass
output.clear_output()
segment_button.value = False
sam.prediction_fp = filename
except Exception as e:
segment_button.value = False
print(e)
segment_button.observe(segment_button_click, "value")
def filechooser_callback(chooser):
with output:
if chooser.selected is not None:
try:
filename = chooser.selected
shutil.copy(sam.prediction_fp, filename)
vector = filename.replace(".tif", ".gpkg")
raster_to_vector(filename, vector)
if rectangular.value:
vector_rec = filename.replace(".tif", "_rect.gpkg")
regularize(vector, vector_rec)
fg_points = [
[marker.location[1], marker.location[0]]
for marker in m.fg_markers
]
bg_points = [
[marker.location[1], marker.location[0]]
for marker in m.bg_markers
]
coords_to_geojson(
fg_points, filename.replace(".tif", "_fg_markers.geojson")
)
coords_to_geojson(
bg_points, filename.replace(".tif", "_bg_markers.geojson")
)
except Exception as e:
print(e)
if hasattr(m, "save_control") and m.save_control in m.controls:
m.remove_control(m.save_control)
delattr(m, "save_control")
save_button.value = False
def save_button_click(change):
if change["new"]:
with output:
sandbox_path = os.environ.get("SANDBOX_PATH")
filechooser = FileChooser(
path=os.getcwd(),
filename="masks.tif",
sandbox_path=sandbox_path,
layout=widgets.Layout(width="454px"),
)
filechooser.use_dir_icons = True
filechooser.filter_pattern = ["*.tif"]
filechooser.register_callback(filechooser_callback)
save_control = ipyleaflet.WidgetControl(
widget=filechooser, position="topright"
)
m.add_control(save_control)
m.save_control = save_control
else:
if hasattr(m, "save_control") and m.save_control in m.controls:
m.remove_control(m.save_control)
delattr(m, "save_control")
save_button.observe(save_button_click, "value")
def reset_button_click(change):
if change["new"]:
segment_button.value = False
reset_button.value = False
opacity_slider.value = 0.7
rectangular.value = False
colorpicker.value = "#ffff00"
output.clear_output()
try:
m.remove_layer(m.find_layer("Masks"))
if m.find_layer("Regularized") is not None:
m.remove_layer(m.find_layer("Regularized"))
m.clear_drawings()
if hasattr(m, "fg_markers"):
m.user_rois = None
m.fg_markers = []
m.bg_markers = []
m.fg_layer.clear_layers()
m.bg_layer.clear_layers()
fg_count.value = 0
bg_count.value = 0
try:
os.remove(sam.prediction_fp)
except:
pass
except:
pass
reset_button.observe(reset_button_click, "value")
toolbar_control = ipyleaflet.WidgetControl(
widget=toolbar_widget, position="topright"
)
m.add_control(toolbar_control)
m.toolbar_control = toolbar_control
return m
show_canvas(image, fg_color=(0, 255, 0), bg_color=(0, 0, 255), radius=5)
¶
Show a canvas to collect foreground and background points.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image |
str | np.ndarray |
The input image. |
required |
fg_color |
tuple |
The color for the foreground points. Defaults to (0, 255, 0). |
(0, 255, 0) |
bg_color |
tuple |
The color for the background points. Defaults to (0, 0, 255). |
(0, 0, 255) |
radius |
int |
The radius of the points. Defaults to 5. |
5 |
Returns:
Type | Description |
---|---|
tuple |
A tuple of two lists of foreground and background points. |
Source code in samgeo/common.py
def show_canvas(image, fg_color=(0, 255, 0), bg_color=(0, 0, 255), radius=5):
"""Show a canvas to collect foreground and background points.
Args:
image (str | np.ndarray): The input image.
fg_color (tuple, optional): The color for the foreground points. Defaults to (0, 255, 0).
bg_color (tuple, optional): The color for the background points. Defaults to (0, 0, 255).
radius (int, optional): The radius of the points. Defaults to 5.
Returns:
tuple: A tuple of two lists of foreground and background points.
"""
if isinstance(image, str):
if image.startswith("http"):
image = download_file(image)
image = cv2.imread(image)
elif isinstance(image, np.ndarray):
pass
else:
raise ValueError("Input image must be a URL or a NumPy array.")
# Create an empty list to store the mouse click coordinates
left_clicks = []
right_clicks = []
# Create a mouse callback function
def get_mouse_coordinates(event, x, y):
if event == cv2.EVENT_LBUTTONDOWN:
# Append the coordinates to the mouse_clicks list
left_clicks.append((x, y))
# Draw a green circle at the mouse click coordinates
cv2.circle(image, (x, y), radius, fg_color, -1)
# Show the updated image with the circle
cv2.imshow("Image", image)
elif event == cv2.EVENT_RBUTTONDOWN:
# Append the coordinates to the mouse_clicks list
right_clicks.append((x, y))
# Draw a red circle at the mouse click coordinates
cv2.circle(image, (x, y), radius, bg_color, -1)
# Show the updated image with the circle
cv2.imshow("Image", image)
# Create a window to display the image
cv2.namedWindow("Image")
# Set the mouse callback function for the window
cv2.setMouseCallback("Image", get_mouse_coordinates)
# Display the image in the window
cv2.imshow("Image", image)
# Wait for a key press to exit
cv2.waitKey(0)
# Destroy the window
cv2.destroyAllWindows()
return left_clicks, right_clicks
show_image_gui(path)
¶
Show an interactive GUI to explore images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path |
str |
The path to the image file or directory containing images. |
required |
Source code in samgeo/common.py
def show_image_gui(path: str) -> None:
"""Show an interactive GUI to explore images.
Args:
path (str): The path to the image file or directory containing images.
"""
from PIL import Image
from ipywidgets import interact, IntSlider
import matplotlib
def setup_interactive_matplotlib():
"""Sets up ipympl backend for interactive plotting in Jupyter."""
# Use the ipympl backend for interactive plotting
try:
import ipympl
matplotlib.use("module://ipympl.backend_nbagg")
except ImportError:
print("ipympl is not installed. Falling back to default backend.")
def load_images_from_folder(folder):
"""Load all images from the specified folder."""
images = []
filenames = []
for filename in sorted(os.listdir(folder)):
if filename.endswith((".png", ".jpg", ".jpeg", ".bmp", ".gif")):
img = Image.open(os.path.join(folder, filename))
img_array = np.array(img)
images.append(img_array)
filenames.append(filename)
return images, filenames
def load_single_image(image_path):
"""Load a single image from the specified image file path."""
img = Image.open(image_path)
img_array = np.array(img)
return [img_array], [
os.path.basename(image_path)
] # Return as lists for consistency
# Check if the input path is a file or a directory
if os.path.isfile(path):
images, filenames = load_single_image(path)
elif os.path.isdir(path):
images, filenames = load_images_from_folder(path)
else:
print("Invalid path. Please provide a valid image file or directory.")
return
total_images = len(images)
if total_images == 0:
print("No images found.")
return
# Set up interactive plotting
setup_interactive_matplotlib()
fig, ax = plt.subplots()
fig.canvas.toolbar_visible = True
fig.canvas.header_visible = False
fig.canvas.footer_visible = True
# Display the first image initially
im_display = ax.imshow(images[0])
ax.set_title(f"Image: {filenames[0]}")
plt.tight_layout()
# Function to update the image when the slider changes (for multiple images)
def update_image(image_index):
im_display.set_data(images[image_index])
ax.set_title(f"Image: {filenames[image_index]}")
fig.canvas.draw()
# Function to show pixel information on click
def onclick(event):
if event.xdata is not None and event.ydata is not None:
col = int(event.xdata)
row = int(event.ydata)
pixel_value = images[current_image_index][
row, col
] # Use current image index
ax.set_title(
f"Image: {filenames[current_image_index]} - X: {col}, Y: {row}, Pixel Value: {pixel_value}"
)
fig.canvas.draw()
# Track the current image index (whether from slider or for single image)
current_image_index = 0
# Slider widget to choose between images (only if there is more than one image)
if total_images > 1:
slider = IntSlider(min=0, max=total_images - 1, step=1, description="Image")
def on_slider_change(change):
nonlocal current_image_index
current_image_index = change["new"] # Update current image index
update_image(current_image_index)
slider.observe(on_slider_change, names="value")
fig.canvas.mpl_connect("button_press_event", onclick)
interact(update_image, image_index=slider)
else:
# If there's only one image, no need for a slider, just show pixel info on click
fig.canvas.mpl_connect("button_press_event", onclick)
# Show the plot
plt.show()
split_raster(filename, out_dir, tile_size=256, overlap=0)
¶
Split a raster into tiles.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
The path or http URL to the raster file. |
required |
out_dir |
str |
The path to the output directory. |
required |
tile_size |
int | tuple |
The size of the tiles. Can be an integer or a tuple of (width, height). Defaults to 256. |
256 |
overlap |
int |
The number of pixels to overlap between tiles. Defaults to 0. |
0 |
Exceptions:
Type | Description |
---|---|
ImportError |
Raised if GDAL is not installed. |
Source code in samgeo/common.py
def split_raster(filename, out_dir, tile_size=256, overlap=0):
"""Split a raster into tiles.
Args:
filename (str): The path or http URL to the raster file.
out_dir (str): The path to the output directory.
tile_size (int | tuple, optional): The size of the tiles. Can be an integer or a tuple of (width, height). Defaults to 256.
overlap (int, optional): The number of pixels to overlap between tiles. Defaults to 0.
Raises:
ImportError: Raised if GDAL is not installed.
"""
try:
from osgeo import gdal
except ImportError:
raise ImportError(
"GDAL is required to use this function. Install it with `conda install gdal -c conda-forge`"
)
if isinstance(filename, str):
if filename.startswith("http"):
output = filename.split("/")[-1]
download_file(filename, output)
filename = output
# Open the input GeoTIFF file
ds = gdal.Open(filename)
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if isinstance(tile_size, int):
tile_width = tile_size
tile_height = tile_size
elif isinstance(tile_size, tuple):
tile_width = tile_size[0]
tile_height = tile_size[1]
# Get the size of the input raster
width = ds.RasterXSize
height = ds.RasterYSize
# Calculate the number of tiles needed in both directions, taking into account the overlap
num_tiles_x = (width - overlap) // (tile_width - overlap) + int(
(width - overlap) % (tile_width - overlap) > 0
)
num_tiles_y = (height - overlap) // (tile_height - overlap) + int(
(height - overlap) % (tile_height - overlap) > 0
)
# Get the georeferencing information of the input raster
geotransform = ds.GetGeoTransform()
# Loop over all the tiles
for i in range(num_tiles_x):
for j in range(num_tiles_y):
# Calculate the pixel coordinates of the tile, taking into account the overlap and clamping to the edge of the raster
x_min = i * (tile_width - overlap)
y_min = j * (tile_height - overlap)
x_max = min(x_min + tile_width, width)
y_max = min(y_min + tile_height, height)
# Adjust the size of the last tile in each row and column to include any remaining pixels
if i == num_tiles_x - 1:
x_min = max(x_max - tile_width, 0)
if j == num_tiles_y - 1:
y_min = max(y_max - tile_height, 0)
# Calculate the size of the tile, taking into account the overlap
tile_width = x_max - x_min
tile_height = y_max - y_min
# Set the output file name
output_file = f"{out_dir}/tile_{i}_{j}.tif"
# Create a new dataset for the tile
driver = gdal.GetDriverByName("GTiff")
tile_ds = driver.Create(
output_file,
tile_width,
tile_height,
ds.RasterCount,
ds.GetRasterBand(1).DataType,
)
# Calculate the georeferencing information for the output tile
tile_geotransform = (
geotransform[0] + x_min * geotransform[1],
geotransform[1],
0,
geotransform[3] + y_min * geotransform[5],
0,
geotransform[5],
)
# Set the geotransform and projection of the tile
tile_ds.SetGeoTransform(tile_geotransform)
tile_ds.SetProjection(ds.GetProjection())
# Read the data from the input raster band(s) and write it to the tile band(s)
for k in range(ds.RasterCount):
band = ds.GetRasterBand(k + 1)
tile_band = tile_ds.GetRasterBand(k + 1)
tile_data = band.ReadAsArray(x_min, y_min, tile_width, tile_height)
tile_band.WriteArray(tile_data)
# Close the tile dataset
tile_ds = None
# Close the input dataset
ds = None
temp_file_path(extension)
¶
Returns a temporary file path.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
extension |
str |
The file extension. |
required |
Returns:
Type | Description |
---|---|
str |
The temporary file path. |
Source code in samgeo/common.py
def temp_file_path(extension):
"""Returns a temporary file path.
Args:
extension (str): The file extension.
Returns:
str: The temporary file path.
"""
import tempfile
import uuid
if not extension.startswith("."):
extension = "." + extension
file_id = str(uuid.uuid4())
file_path = os.path.join(tempfile.gettempdir(), f"{file_id}{extension}")
return file_path
text_sam_gui(sam, basemap='SATELLITE', out_dir=None, box_threshold=0.25, text_threshold=0.25, cmap='viridis', opacity=0.7, **kwargs)
¶
Display the SAM Map GUI.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
sam |
SamGeo |
required | |
basemap |
str |
The basemap to use. Defaults to "SATELLITE". |
'SATELLITE' |
out_dir |
str |
The output directory. Defaults to None. |
None |
Source code in samgeo/common.py
def text_sam_gui(
sam,
basemap="SATELLITE",
out_dir=None,
box_threshold=0.25,
text_threshold=0.25,
cmap="viridis",
opacity=0.7,
**kwargs,
):
"""Display the SAM Map GUI.
Args:
sam (SamGeo):
basemap (str, optional): The basemap to use. Defaults to "SATELLITE".
out_dir (str, optional): The output directory. Defaults to None.
"""
try:
import shutil
import tempfile
import leafmap
import ipyleaflet
import ipyevents
import ipywidgets as widgets
import leafmap.colormaps as cm
from ipyfilechooser import FileChooser
except ImportError:
raise ImportError(
"The sam_map function requires the leafmap package. Please install it first."
)
if out_dir is None:
out_dir = tempfile.gettempdir()
m = leafmap.Map(**kwargs)
m.default_style = {"cursor": "crosshair"}
m.add_basemap(basemap, show=False)
# Skip the image layer if localtileserver is not available
try:
m.add_raster(sam.source, layer_name="Image")
except:
pass
widget_width = "280px"
button_width = "90px"
padding = "0px 4px 0px 4px" # upper, right, bottom, left
style = {"description_width": "initial"}
toolbar_button = widgets.ToggleButton(
value=True,
tooltip="Toolbar",
icon="gear",
layout=widgets.Layout(width="28px", height="28px", padding="0px 0px 0px 4px"),
)
close_button = widgets.ToggleButton(
value=False,
tooltip="Close the tool",
icon="times",
button_style="primary",
layout=widgets.Layout(height="28px", width="28px", padding="0px 0px 0px 4px"),
)
text_prompt = widgets.Text(
description="Text prompt:",
style=style,
layout=widgets.Layout(width=widget_width, padding=padding),
)
box_slider = widgets.FloatSlider(
description="Box threshold:",
min=0,
max=1,
value=box_threshold,
step=0.01,
readout=True,
continuous_update=True,
layout=widgets.Layout(width=widget_width, padding=padding),
style=style,
)
text_slider = widgets.FloatSlider(
description="Text threshold:",
min=0,
max=1,
step=0.01,
value=text_threshold,
readout=True,
continuous_update=True,
layout=widgets.Layout(width=widget_width, padding=padding),
style=style,
)
cmap_dropdown = widgets.Dropdown(
description="Palette:",
options=cm.list_colormaps(),
value=cmap,
style=style,
layout=widgets.Layout(width=widget_width, padding=padding),
)
opacity_slider = widgets.FloatSlider(
description="Opacity:",
min=0,
max=1,
value=opacity,
readout=True,
continuous_update=True,
layout=widgets.Layout(width=widget_width, padding=padding),
style=style,
)
def opacity_changed(change):
if change["new"]:
if hasattr(m, "layer_name"):
mask_layer = m.find_layer(m.layer_name)
if mask_layer is not None:
mask_layer.interact(opacity=opacity_slider.value)
opacity_slider.observe(opacity_changed, "value")
rectangular = widgets.Checkbox(
value=False,
description="Regularize",
layout=widgets.Layout(width="130px", padding=padding),
style=style,
)
colorpicker = widgets.ColorPicker(
concise=False,
description="Color",
value="#ffff00",
layout=widgets.Layout(width="140px", padding=padding),
style=style,
)
segment_button = widgets.ToggleButton(
description="Segment",
value=False,
button_style="primary",
layout=widgets.Layout(padding=padding),
)
save_button = widgets.ToggleButton(
description="Save", value=False, button_style="primary"
)
reset_button = widgets.ToggleButton(
description="Reset", value=False, button_style="primary"
)
segment_button.layout.width = button_width
save_button.layout.width = button_width
reset_button.layout.width = button_width
output = widgets.Output(
layout=widgets.Layout(
width=widget_width, padding=padding, max_width=widget_width
)
)
toolbar_header = widgets.HBox()
toolbar_header.children = [close_button, toolbar_button]
toolbar_footer = widgets.VBox()
toolbar_footer.children = [
text_prompt,
box_slider,
text_slider,
cmap_dropdown,
opacity_slider,
widgets.HBox([rectangular, colorpicker]),
widgets.HBox(
[segment_button, save_button, reset_button],
layout=widgets.Layout(padding="0px 4px 0px 4px"),
),
output,
]
toolbar_widget = widgets.VBox()
toolbar_widget.children = [toolbar_header, toolbar_footer]
toolbar_event = ipyevents.Event(
source=toolbar_widget, watched_events=["mouseenter", "mouseleave"]
)
def handle_toolbar_event(event):
if event["type"] == "mouseenter":
toolbar_widget.children = [toolbar_header, toolbar_footer]
elif event["type"] == "mouseleave":
if not toolbar_button.value:
toolbar_widget.children = [toolbar_button]
toolbar_button.value = False
close_button.value = False
toolbar_event.on_dom_event(handle_toolbar_event)
def toolbar_btn_click(change):
if change["new"]:
close_button.value = False
toolbar_widget.children = [toolbar_header, toolbar_footer]
else:
if not close_button.value:
toolbar_widget.children = [toolbar_button]
toolbar_button.observe(toolbar_btn_click, "value")
def close_btn_click(change):
if change["new"]:
toolbar_button.value = False
if m.toolbar_control in m.controls:
m.remove_control(m.toolbar_control)
toolbar_widget.close()
close_button.observe(close_btn_click, "value")
def segment_button_click(change):
if change["new"]:
segment_button.value = False
with output:
output.clear_output()
if len(text_prompt.value) == 0:
print("Please enter a text prompt first.")
elif sam.source is None:
print("Please run sam.set_image() first.")
else:
print("Segmenting...")
layer_name = text_prompt.value.replace(" ", "_")
filename = os.path.join(
out_dir, f"{layer_name}_{random_string()}.tif"
)
try:
sam.predict(
sam.source,
text_prompt.value,
box_slider.value,
text_slider.value,
output=filename,
)
sam.output = filename
if m.find_layer(layer_name) is not None:
m.remove_layer(m.find_layer(layer_name))
if m.find_layer(f"{layer_name}_rect") is not None:
m.remove_layer(m.find_layer(f"{layer_name} Regularized"))
except Exception as e:
output.clear_output()
print(e)
if os.path.exists(filename):
try:
m.add_raster(
filename,
layer_name=layer_name,
palette=cmap_dropdown.value,
opacity=opacity_slider.value,
nodata=0,
zoom_to_layer=False,
)
m.layer_name = layer_name
if rectangular.value:
vector = filename.replace(".tif", ".gpkg")
vector_rec = filename.replace(".tif", "_rect.gpkg")
raster_to_vector(filename, vector)
regularize(vector, vector_rec)
vector_style = {"color": colorpicker.value}
m.add_vector(
vector_rec,
layer_name=f"{layer_name} Regularized",
style=vector_style,
info_mode=None,
zoom_to_layer=False,
)
output.clear_output()
except Exception as e:
print(e)
segment_button.observe(segment_button_click, "value")
def filechooser_callback(chooser):
with output:
if chooser.selected is not None:
try:
filename = chooser.selected
shutil.copy(sam.output, filename)
vector = filename.replace(".tif", ".gpkg")
raster_to_vector(filename, vector)
if rectangular.value:
vector_rec = filename.replace(".tif", "_rect.gpkg")
regularize(vector, vector_rec)
except Exception as e:
print(e)
if hasattr(m, "save_control") and m.save_control in m.controls:
m.remove_control(m.save_control)
delattr(m, "save_control")
save_button.value = False
def save_button_click(change):
if change["new"]:
with output:
output.clear_output()
if not hasattr(m, "layer_name"):
print("Please click the Segment button first.")
else:
sandbox_path = os.environ.get("SANDBOX_PATH")
filechooser = FileChooser(
path=os.getcwd(),
filename=f"{m.layer_name}.tif",
sandbox_path=sandbox_path,
layout=widgets.Layout(width="454px"),
)
filechooser.use_dir_icons = True
filechooser.filter_pattern = ["*.tif"]
filechooser.register_callback(filechooser_callback)
save_control = ipyleaflet.WidgetControl(
widget=filechooser, position="topright"
)
m.add_control(save_control)
m.save_control = save_control
else:
if hasattr(m, "save_control") and m.save_control in m.controls:
m.remove_control(m.save_control)
delattr(m, "save_control")
save_button.observe(save_button_click, "value")
def reset_button_click(change):
if change["new"]:
segment_button.value = False
save_button.value = False
reset_button.value = False
opacity_slider.value = 0.7
box_slider.value = 0.25
text_slider.value = 0.25
cmap_dropdown.value = "viridis"
text_prompt.value = ""
output.clear_output()
try:
if hasattr(m, "layer_name") and m.find_layer(m.layer_name) is not None:
m.remove_layer(m.find_layer(m.layer_name))
m.clear_drawings()
except:
pass
reset_button.observe(reset_button_click, "value")
toolbar_control = ipyleaflet.WidgetControl(
widget=toolbar_widget, position="topright"
)
m.add_control(toolbar_control)
m.toolbar_control = toolbar_control
return m
tms_to_geotiff(output, bbox, zoom=None, resolution=None, source='OpenStreetMap', crs='EPSG:3857', to_cog=False, return_image=False, overwrite=False, quiet=False, **kwargs)
¶
Download TMS tiles and convert them to a GeoTIFF. The source is adapted from https://github.com/gumblex/tms2geotiff. Credits to the GitHub user @gumblex.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output |
str |
The output GeoTIFF file. |
required |
bbox |
list |
The bounding box [minx, miny, maxx, maxy], e.g., [-122.5216, 37.733, -122.3661, 37.8095] |
required |
zoom |
int |
The map zoom level. Defaults to None. |
None |
resolution |
float |
The resolution in meters. Defaults to None. |
None |
source |
str |
The tile source. It can be one of the following: "OPENSTREETMAP", "ROADMAP", "SATELLITE", "TERRAIN", "HYBRID", or an HTTP URL. Defaults to "OpenStreetMap". |
'OpenStreetMap' |
crs |
str |
The output CRS. Defaults to "EPSG:3857". |
'EPSG:3857' |
to_cog |
bool |
Convert to Cloud Optimized GeoTIFF. Defaults to False. |
False |
return_image |
bool |
Return the image as PIL.Image. Defaults to False. |
False |
overwrite |
bool |
Overwrite the output file if it already exists. Defaults to False. |
False |
quiet |
bool |
Suppress output. Defaults to False. |
False |
**kwargs |
Additional arguments to pass to gdal.GetDriverByName("GTiff").Create(). |
{} |
Source code in samgeo/common.py
def tms_to_geotiff(
output,
bbox,
zoom=None,
resolution=None,
source="OpenStreetMap",
crs="EPSG:3857",
to_cog=False,
return_image=False,
overwrite=False,
quiet=False,
**kwargs,
):
"""Download TMS tiles and convert them to a GeoTIFF. The source is adapted from https://github.com/gumblex/tms2geotiff.
Credits to the GitHub user @gumblex.
Args:
output (str): The output GeoTIFF file.
bbox (list): The bounding box [minx, miny, maxx, maxy], e.g., [-122.5216, 37.733, -122.3661, 37.8095]
zoom (int, optional): The map zoom level. Defaults to None.
resolution (float, optional): The resolution in meters. Defaults to None.
source (str, optional): The tile source. It can be one of the following: "OPENSTREETMAP", "ROADMAP",
"SATELLITE", "TERRAIN", "HYBRID", or an HTTP URL. Defaults to "OpenStreetMap".
crs (str, optional): The output CRS. Defaults to "EPSG:3857".
to_cog (bool, optional): Convert to Cloud Optimized GeoTIFF. Defaults to False.
return_image (bool, optional): Return the image as PIL.Image. Defaults to False.
overwrite (bool, optional): Overwrite the output file if it already exists. Defaults to False.
quiet (bool, optional): Suppress output. Defaults to False.
**kwargs: Additional arguments to pass to gdal.GetDriverByName("GTiff").Create().
"""
import re
import io
import math
import itertools
import concurrent.futures
from PIL import Image
try:
from osgeo import gdal, osr
except ImportError:
raise ImportError("GDAL is not installed. Install it with pip install GDAL")
try:
import httpx
SESSION = httpx.Client()
except ImportError:
import requests
SESSION = requests.Session()
if not overwrite and os.path.exists(output):
print(
f"The output file {output} already exists. Use `overwrite=True` to overwrite it."
)
return
xyz_tiles = {
"OPENSTREETMAP": "https://tile.openstreetmap.org/{z}/{x}/{y}.png",
"ROADMAP": "https://mt1.google.com/vt/lyrs=m&x={x}&y={y}&z={z}",
"SATELLITE": "https://mt1.google.com/vt/lyrs=s&x={x}&y={y}&z={z}",
"TERRAIN": "https://mt1.google.com/vt/lyrs=p&x={x}&y={y}&z={z}",
"HYBRID": "https://mt1.google.com/vt/lyrs=y&x={x}&y={y}&z={z}",
}
basemaps = get_basemaps()
if isinstance(source, str):
if source.upper() in xyz_tiles:
source = xyz_tiles[source.upper()]
elif source in basemaps:
source = basemaps[source]
elif source.startswith("http"):
pass
else:
raise ValueError(
'source must be one of "OpenStreetMap", "ROADMAP", "SATELLITE", "TERRAIN", "HYBRID", or a URL'
)
def resolution_to_zoom_level(resolution):
"""
Convert map resolution in meters to zoom level for Web Mercator (EPSG:3857) tiles.
"""
# Web Mercator tile size in meters at zoom level 0
initial_resolution = 156543.03392804097
# Calculate the zoom level
zoom_level = math.log2(initial_resolution / resolution)
return int(zoom_level)
if isinstance(bbox, list) and len(bbox) == 4:
west, south, east, north = bbox
else:
raise ValueError(
"bbox must be a list of 4 coordinates in the format of [xmin, ymin, xmax, ymax]"
)
if zoom is None and resolution is None:
raise ValueError("Either zoom or resolution must be provided")
elif zoom is not None and resolution is not None:
raise ValueError("Only one of zoom or resolution can be provided")
if resolution is not None:
zoom = resolution_to_zoom_level(resolution)
EARTH_EQUATORIAL_RADIUS = 6378137.0
Image.MAX_IMAGE_PIXELS = None
gdal.UseExceptions()
web_mercator = osr.SpatialReference()
try:
web_mercator.ImportFromEPSG(3857)
except RuntimeError as e:
# https://github.com/PDAL/PDAL/issues/2544#issuecomment-637995923
if "PROJ" in str(e):
pattern = r"/[\w/]+"
match = re.search(pattern, str(e))
if match:
file_path = match.group(0)
os.environ["PROJ_LIB"] = file_path
os.environ["GDAL_DATA"] = file_path.replace("proj", "gdal")
web_mercator.ImportFromEPSG(3857)
WKT_3857 = web_mercator.ExportToWkt()
def from4326_to3857(lat, lon):
xtile = math.radians(lon) * EARTH_EQUATORIAL_RADIUS
ytile = (
math.log(math.tan(math.radians(45 + lat / 2.0))) * EARTH_EQUATORIAL_RADIUS
)
return (xtile, ytile)
def deg2num(lat, lon, zoom):
lat_r = math.radians(lat)
n = 2**zoom
xtile = (lon + 180) / 360 * n
ytile = (1 - math.log(math.tan(lat_r) + 1 / math.cos(lat_r)) / math.pi) / 2 * n
return (xtile, ytile)
def is_empty(im):
extrema = im.getextrema()
if len(extrema) >= 3:
if len(extrema) > 3 and extrema[-1] == (0, 0):
return True
for ext in extrema[:3]:
if ext != (0, 0):
return False
return True
else:
return extrema[0] == (0, 0)
def paste_tile(bigim, base_size, tile, corner_xy, bbox):
if tile is None:
return bigim
im = Image.open(io.BytesIO(tile))
mode = "RGB" if im.mode == "RGB" else "RGBA"
size = im.size
if bigim is None:
base_size[0] = size[0]
base_size[1] = size[1]
newim = Image.new(
mode, (size[0] * (bbox[2] - bbox[0]), size[1] * (bbox[3] - bbox[1]))
)
else:
newim = bigim
dx = abs(corner_xy[0] - bbox[0])
dy = abs(corner_xy[1] - bbox[1])
xy0 = (size[0] * dx, size[1] * dy)
if mode == "RGB":
newim.paste(im, xy0)
else:
if im.mode != mode:
im = im.convert(mode)
if not is_empty(im):
newim.paste(im, xy0)
im.close()
return newim
def finish_picture(bigim, base_size, bbox, x0, y0, x1, y1):
xfrac = x0 - bbox[0]
yfrac = y0 - bbox[1]
x2 = round(base_size[0] * xfrac)
y2 = round(base_size[1] * yfrac)
imgw = round(base_size[0] * (x1 - x0))
imgh = round(base_size[1] * (y1 - y0))
retim = bigim.crop((x2, y2, x2 + imgw, y2 + imgh))
if retim.mode == "RGBA" and retim.getextrema()[3] == (255, 255):
retim = retim.convert("RGB")
bigim.close()
return retim
def get_tile(url):
retry = 3
while 1:
try:
r = SESSION.get(url, timeout=60)
break
except Exception:
retry -= 1
if not retry:
raise
if r.status_code == 404:
return None
elif not r.content:
return None
r.raise_for_status()
return r.content
def draw_tile(
source, lat0, lon0, lat1, lon1, zoom, filename, quiet=False, **kwargs
):
x0, y0 = deg2num(lat0, lon0, zoom)
x1, y1 = deg2num(lat1, lon1, zoom)
x0, x1 = sorted([x0, x1])
y0, y1 = sorted([y0, y1])
corners = tuple(
itertools.product(
range(math.floor(x0), math.ceil(x1)),
range(math.floor(y0), math.ceil(y1)),
)
)
totalnum = len(corners)
futures = []
with concurrent.futures.ThreadPoolExecutor(5) as executor:
for x, y in corners:
futures.append(
executor.submit(get_tile, source.format(z=zoom, x=x, y=y))
)
bbox = (math.floor(x0), math.floor(y0), math.ceil(x1), math.ceil(y1))
bigim = None
base_size = [256, 256]
for k, (fut, corner_xy) in enumerate(zip(futures, corners), 1):
bigim = paste_tile(bigim, base_size, fut.result(), corner_xy, bbox)
if not quiet:
print(
f"Downloaded image {str(k).zfill(len(str(totalnum)))}/{totalnum}"
)
if not quiet:
print("Saving GeoTIFF. Please wait...")
img = finish_picture(bigim, base_size, bbox, x0, y0, x1, y1)
imgbands = len(img.getbands())
driver = gdal.GetDriverByName("GTiff")
if "options" not in kwargs:
kwargs["options"] = [
"COMPRESS=DEFLATE",
"PREDICTOR=2",
"ZLEVEL=9",
"TILED=YES",
]
gtiff = driver.Create(
filename,
img.size[0],
img.size[1],
imgbands,
gdal.GDT_Byte,
**kwargs,
)
xp0, yp0 = from4326_to3857(lat0, lon0)
xp1, yp1 = from4326_to3857(lat1, lon1)
pwidth = abs(xp1 - xp0) / img.size[0]
pheight = abs(yp1 - yp0) / img.size[1]
gtiff.SetGeoTransform((min(xp0, xp1), pwidth, 0, max(yp0, yp1), 0, -pheight))
gtiff.SetProjection(WKT_3857)
for band in range(imgbands):
array = np.array(img.getdata(band), dtype="u8")
array = array.reshape((img.size[1], img.size[0]))
band = gtiff.GetRasterBand(band + 1)
band.WriteArray(array)
gtiff.FlushCache()
if not quiet:
print(f"Image saved to {filename}")
return img
try:
image = draw_tile(
source, south, west, north, east, zoom, output, quiet, **kwargs
)
if return_image:
return image
if crs.upper() != "EPSG:3857":
reproject(output, output, crs, to_cog=to_cog)
elif to_cog:
image_to_cog(output, output)
except Exception as e:
raise Exception(e)
transform_coords(x, y, src_crs, dst_crs, **kwargs)
¶
Transform coordinates from one CRS to another.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
float |
The x coordinate. |
required |
y |
float |
The y coordinate. |
required |
src_crs |
str |
The source CRS, e.g., "EPSG:4326". |
required |
dst_crs |
str |
The destination CRS, e.g., "EPSG:3857". |
required |
Returns:
Type | Description |
---|---|
dict |
The transformed coordinates in the format of (x, y) |
Source code in samgeo/common.py
def transform_coords(x, y, src_crs, dst_crs, **kwargs):
"""Transform coordinates from one CRS to another.
Args:
x (float): The x coordinate.
y (float): The y coordinate.
src_crs (str): The source CRS, e.g., "EPSG:4326".
dst_crs (str): The destination CRS, e.g., "EPSG:3857".
Returns:
dict: The transformed coordinates in the format of (x, y)
"""
transformer = pyproj.Transformer.from_crs(
src_crs, dst_crs, always_xy=True, **kwargs
)
return transformer.transform(x, y)
update_package(out_dir=None, keep=False, **kwargs)
¶
Updates the package from the GitHub repository without the need to use pip or conda.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
out_dir |
str |
The output directory. Defaults to None. |
None |
keep |
bool |
Whether to keep the downloaded package. Defaults to False. |
False |
**kwargs |
Additional keyword arguments to pass to the download_file() function. |
{} |
Source code in samgeo/common.py
def update_package(out_dir=None, keep=False, **kwargs):
"""Updates the package from the GitHub repository without the need to use pip or conda.
Args:
out_dir (str, optional): The output directory. Defaults to None.
keep (bool, optional): Whether to keep the downloaded package. Defaults to False.
**kwargs: Additional keyword arguments to pass to the download_file() function.
"""
import shutil
try:
if out_dir is None:
out_dir = os.getcwd()
url = (
"https://github.com/opengeos/segment-geospatial/archive/refs/heads/main.zip"
)
filename = "segment-geospatial-main.zip"
download_file(url, filename, **kwargs)
pkg_dir = os.path.join(out_dir, "segment-geospatial-main")
work_dir = os.getcwd()
os.chdir(pkg_dir)
if shutil.which("pip") is None:
cmd = "pip3 install ."
else:
cmd = "pip install ."
os.system(cmd)
os.chdir(work_dir)
if not keep:
shutil.rmtree(pkg_dir)
try:
os.remove(filename)
except:
pass
print("Package updated successfully.")
except Exception as e:
raise Exception(e)
vector_to_geojson(filename, output=None, **kwargs)
¶
Converts a vector file to a geojson file.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str |
The vector file path. |
required |
output |
str |
The output geojson file path. Defaults to None. |
None |
Returns:
Type | Description |
---|---|
dict |
The geojson dictionary. |
Source code in samgeo/common.py
def vector_to_geojson(filename, output=None, **kwargs):
"""Converts a vector file to a geojson file.
Args:
filename (str): The vector file path.
output (str, optional): The output geojson file path. Defaults to None.
Returns:
dict: The geojson dictionary.
"""
if filename.startswith("http"):
filename = download_file(filename)
gdf = gpd.read_file(filename, **kwargs)
if output is None:
return gdf.__geo_interface__
else:
gdf.to_file(output, driver="GeoJSON")
video_to_images(video_path, output_dir, frame_rate=None, prefix='')
¶
Converts a video into a series of images. Each frame of the video is saved as an image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
video_path |
str |
The path to the video file. |
required |
output_dir |
str |
The directory where the images will be saved. |
required |
frame_rate |
Optional[int] |
The number of frames to save per second of video. If None, all frames will be saved. Defaults to None. |
None |
prefix |
str |
The prefix for the output image filenames. Defaults to 'frame_'. |
'' |
Exceptions:
Type | Description |
---|---|
ValueError |
If the video file cannot be read or if the output directory is invalid. |
Example usage: video_to_images('input_video.mp4', 'output_images', frame_rate=1, prefix='image_')
Source code in samgeo/common.py
def video_to_images(
video_path: str,
output_dir: str,
frame_rate: Optional[int] = None,
prefix: str = "",
) -> None:
"""
Converts a video into a series of images. Each frame of the video is saved as an image.
Args:
video_path (str): The path to the video file.
output_dir (str): The directory where the images will be saved.
frame_rate (Optional[int], optional): The number of frames to save per second of video.
If None, all frames will be saved. Defaults to None.
prefix (str, optional): The prefix for the output image filenames. Defaults to 'frame_'.
Raises:
ValueError: If the video file cannot be read or if the output directory is invalid.
Example usage:
video_to_images('input_video.mp4', 'output_images', frame_rate=1, prefix='image_')
"""
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Open the video file
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Error opening video file {video_path}")
# Get video properties
video_fps = int(cap.get(cv2.CAP_PROP_FPS))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_rate = (
frame_rate if frame_rate else video_fps
) # Default to original FPS if not provided
# Calculate the number of digits based on the total frames (e.g., if total frames are 1000, width = 4)
num_digits = len(str(total_frames))
print(f"Video FPS: {video_fps}")
print(f"Total Frames: {total_frames}")
print(f"Saving every {video_fps // frame_rate} frame(s)")
frame_count = 0
saved_frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Save frames based on frame_rate
if frame_count % (video_fps // frame_rate) == 0:
img_path = os.path.join(
output_dir, f"{prefix}{saved_frame_count:0{num_digits}d}.jpg"
)
cv2.imwrite(img_path, frame)
saved_frame_count += 1
# print(f"Saved {img_path}")
frame_count += 1
# Release the video capture object
cap.release()
print(f"Finished saving {saved_frame_count} images to {output_dir}")